Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-3 vào A, ta được:
\(A=\dfrac{-3-5}{-3-4}=\dfrac{8}{7}\)
b: \(B=\dfrac{2}{x+5}+\dfrac{x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{2x-10+x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3}{x-5}\)
c: Để M là số nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;7;1\right\}\)
a: \(B=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(x-4\right)}=\dfrac{x-2}{x-4}\)
Để B>=0 thì x-4>0 hoặc x-2<=0
=>x>4 hoặc x<=2
b: Để B là số nguyên thì x-4+2 chia hết cho x-4
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{5;6;2\right\}\)
Bài 4:
a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.
Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$
$\Leftrightarrow x<3$
b.
$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$
Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.
$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$
Bài 5:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)
\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)
M=\(\frac{\sqrt{x}+5}{\sqrt{x}+1}\)= \(\frac{\sqrt{x}+1+4}{\sqrt{x}+1}\)= 1+\(\frac{4}{\sqrt{x}+1}\)
Để M thuộc Z thì \(\frac{4}{\sqrt{x}+1}\) thuộc Z =>\(\sqrt{x}+1\) thuộc Ư(4)={ -1 ; 1 ; -2 ; 2 ; -4; 4 }
\(\sqrt{x}+1\) | -4 | -2 | -1 | 1 | 2 | 4 |
\(\sqrt{x}\) | -5 | -3 | -2 | 0 | 1 | 3 |
x | 25 | 9 | 4 | 0 | 1 | 9 |
KL : Với x thuộc {25 ; 9 ;4 ;0 ;1 } thì M thuộc Z
Chú ý nha bạn : Câu a và câu b như nhau vì m thuộc z <=> m có giá trị nguyên
a/ Để A ∈ Z
⇒ \(3x^2-9x+2\) ⋮ \(x-3\)
⇒ \(3x\left(x-3\right)+2\) ⋮ \(x-3\)
Vì \(3x\left(x-3\right)\) ⋮ \(x-3\)
⇒ \(2\) ⋮ \(x-3\)
⇒ \(x-3\inƯ_{\left(2\right)}\)
⇒ \(x-3\in\left\{1;2;-1;-2\right\}\)
⇒ \(x\in\left\{4;5;2;1\right\}\)
Vậy ...
b.
Ta có:
\(A=\dfrac{3n+9}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)
Để A thuộc Z
=> \(\dfrac{21}{n-4}\in Z\) ( n khác 4)
=> \(21⋮\left(n-4\right)\)
\(\Rightarrow n-4\inƯ\left(21\right)=\left\{21;-21;7;-7;3;-3\right\}\)
\(\Rightarrow n\in\left\{25;-17;11;-3;-1;1\right\}\) ( nhận)