Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Giả sử \(b>c\)
Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)
Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)
Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:
Trường hợp 1: \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được
\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)
\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)
\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).
\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)
Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)
Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)
Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !
~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`
a) x^6 - x^4 + 2x^3 + 2x^2
=x2(x4-x2+2x+2)
=x2[x4-2x3+2x2+2x3-4x2+4x+x2-2x+2]
=x2[x2(x2-2x+2)+2x(x2-2x+2)+(x2-2x+2)
=x2[(x2+2x+12)(x2-2x+2)]
=x2(x+1)2(x2-2x+2)
b) x^(m+4) + x^(m+1) - x - 1
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
=>đa thức đc phân tích là
=(x+1)(xm+3-xm+2+xm+1-1)
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha
Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b
h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3
+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)
+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)
Nếu f(1)=2 thì:
\(2+a+b+6=2\)
\(\Rightarrow a+b=-6\)
Nếu f(-1)=12 thì:
\(-2+a-b+6=12\)
\(\Rightarrow a-b=8\)
Giá trị a và b thoả mãn là rất lớn nên mình không lập bảng.