Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)
Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)
ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)
Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)
\(\Delta=b^2-4ac=\left(m+4\right)^2-4\left(4m-2\right)=m^2+8m+16-16m+8=m^2-8m+24=\left(m-4\right)^2+8\)
Ta có: \(M=\dfrac{a^2-3a\sqrt{a}+2}{a-3\sqrt{a}}\)
\(=\dfrac{a^2-a\sqrt{a}-2a\sqrt{a}+2}{a-3\sqrt{a}}\)
\(=\dfrac{a\sqrt{a}\left(\sqrt{a}-1\right)-2\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)