\(\left(-10;10\right)\) để phương trình
\(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

\(f\left(x\right)=x^3-3x^2+\left(2m-2\right)x+m-3\\ f'\left(x\right)=3x^2-6x+2m-2\\ \Delta'_{f'}=-6m+15\)

Phương trình có 3 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_{f'}=-6m+15>0\\y_{CĐ}y_{CT}< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \frac{5}{2}\\\left[\left(\frac{4}{3}m-\frac{10}{3}\right)x_{CĐ}+\frac{5}{3}m-\frac{11}{3}\right]\left[\left(\frac{4}{3}m-\frac{10}{3}\right)x_{CT}+\frac{5}{3}m-\frac{11}{3}\right]\end{matrix}\right.\\ \left\{{}\begin{matrix}m< \frac{5}{2}\\32m^3+3m^2-534m+823< 0\end{matrix}\right.\left(k\right)}\)

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=3>0\\x_1x_2+x_2x_3+x_3x_1=2m-2\\x_1x_2x_3=3-m>0\end{matrix}\right.\)

Từ \(x_1< -1< x_2< x_3\Rightarrow\left(x_1+1\right)\left(x_2+1\right)\left(x_2+1\right)< 0\)

Và từ \(\left(x_1+1\right)\left(x_2+1\right)\left(x_3+1\right)< 0\), do Viet ở trên nên \(x_1< -1< x_2< x_3\)

Vậy phương trình có 3 nghiệm thỏa mãn yêu cầu đề bài \(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)\left(x_3+1\right)< 0\\ \Leftrightarrow x_1x_2x_3+x_1x_2+x_2x_3+x_3x_1+x_1+x_2+x_3+1< 0\\ \Leftrightarrow3-m+2m-2+3+1< 0\Leftrightarrow m< -5\)

Với m<-5 thì thỏa mãn điều kiện (k) ở trên. Vậy -10<m<-5

20 tháng 4 2016

Vì 3 nghiệm phân biệt : \(x_1,x_2,x_3\) lập thàng cấp số cộng, nên ta có thể đặt :

\(x_1=x_0-d,x_2=x_0;x_3=x_0+d\left(d\ne0\right)\). Theo giả thiết ta có :

\(x^3+3x^2-\left(24+m\right)x-26-n=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)

                                                 \(=\left(x-x_0+d\right)\left(x-x_0\right)\left(x-x_0-d\right)\)

                                                 \(=x^3-3x_0x^2+\left(3x^2_0-d^2\right)x-x^3_0+x_0d^2\) với mọi x

Đồng nhất hệ số ở hai vế của phương trình ta có hệ :

\(\begin{cases}-3x_0=3\\3x_0^2-d^2=-\left(24+m\right)\\-x_0^3+x_0d^2=-26-n\end{cases}\)  \(\Leftrightarrow\begin{cases}x_0=-1\\3-d^2=-24-m\\1-d^2=-26-n\end{cases}\)  \(\Leftrightarrow\begin{cases}x_0=-1\\m=n\end{cases}\)

Vậy với m = n thì 3 nghiệm phân biệt của phương trình lập thành cấp số cộng

AH
Akai Haruma
Giáo viên
6 tháng 8 2019

Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:

PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)

\((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:

\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:

\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)

Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)

\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)

PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)

\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)

\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)

\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$

$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$

Thử lại thấy thỏa mãn.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:

PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)

\((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:

\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:

\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)

Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)

\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)

PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)

\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)

\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)

\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$

$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$

Thử lại thấy thỏa mãn.

NV
20 tháng 9 2020

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

NV
20 tháng 9 2020

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

27 tháng 9 2020

Hỏi đáp Toán