![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:
a.
\(sin3x-sinx\ne0\)
\(\Leftrightarrow sin3x\ne sinx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
b.
\(cos3x-cosx\ne0\Leftrightarrow cos3x\ne cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{cos3x+cos9x+cos5x+cos7x}{sin3x+sin9x+sin5x+sin7x}=\frac{2cos6x.cos3x+2cos6x.cosx}{2sin6x.cos3x+2sin6x.cosx}\)
\(=\frac{2cos6x\left(cos3x+cosx\right)}{2sin6x\left(cos3x+cosx\right)}=tan6x\)
\(A=1\Rightarrow tan6x=1\Rightarrow x=\frac{\pi}{24}+\frac{k\pi}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)
c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)
\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: ...
\(5\left(\frac{sinx+2sin2x.sinx+sin3x+cos3x}{1+2sin2x}\right)=cos2x+3\)
\(\Leftrightarrow5\left(\frac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}\right)=cos2x+3\)
\(\Leftrightarrow5\left(\frac{sinx+sin3x+cosx}{1+2sin2x}\right)=cos2x+3\)
\(\Leftrightarrow5\left(\frac{2sin2x.cosx+cosx}{1+2sin2x}\right)=cos2x+3\)
\(\Leftrightarrow5cosx=cos2x+3\)
\(\Leftrightarrow5cosx=2cos^2x+2\)
\(\Leftrightarrow2cos^2x-5cosx+2=0\Leftrightarrow cosx=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề thiếu bạn nhé!
\(5(sinx+\frac{cos3x+sin3x}{1+2sin2x})=cos2x+3\) (*)
ĐKXĐ: 1 + 2sin2x \(\ne0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ne-\frac{\pi}{12}+k\pi\\x\ne\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
Biến đổi riêng biểu thức: \(\frac{cos3x+sin3x}{1+2sin2x}\)
= \(\frac{\left(4cos^3x-3cosx\right)+\left(3sinx-4sin^3x\right)}{1+2sin2x}\)
\(=\frac{4\left(cos^3x-sin^3x\right)+3\left(sinx-cosx\right)}{1+2sin2x}\)
\(=\frac{4\left(cosx-sinx\right)\left(cos^2x+sinx.cosx+sin^2x\right)-3\left(cosx-sinx\right)}{1+2sin2x}\)
= \(\frac{4\left(cosx-sinx\right)\left(1+sinx.cosx\right)-3\left(cosx-sinx\right)}{1+2sin2x}\)
= \(\frac{\left(cosx-sinx\right)\left(4+2sin2x-3\right)}{1+2sin2x}\)
= cosx - sinx
Khi đó:
(*) \(\Leftrightarrow\) 5(sinx + cosx - sinx) - cos2x - 3 = 0
\(\Leftrightarrow5cosx+1-2cos^2x-3=0\)
\(\Leftrightarrow2cos^2x-5cosx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=2\left(-1\le cosx\le1\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\frac{\pi}{3}+k2\pi\)
Với x \(\in\left[0;2\pi\right]\Leftrightarrow\left[{}\begin{matrix}0\le\frac{\pi}{3}+k2\pi\le2\pi\\0\le-\frac{\pi}{3}+k2\pi\le2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\frac{1}{6}\le k\le\frac{5}{6}\\\frac{1}{6}\le k\le\frac{7}{6}\end{matrix}\right.\)
k \(\in Z\Rightarrow\left[{}\begin{matrix}k=0\\k=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}\\x=\frac{5\pi}{3}\end{matrix}\right.\)
Nghiệm của pt (*) thuộc đoạn [0;\(2\pi\)] là:
S = \(\left\{\frac{\pi}{3};\frac{5\pi}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\cos3x+cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\2cos2x.cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cos2x\ne0\end{matrix}\right.\)
Phương trình tương đương:
\(\left(sin3x-sinx\right)\left(\frac{cos^2x}{sin^2x}-1\right)=0\)
\(\Leftrightarrow2cos2x.sinx.\left(cos^2x-sin^2x\right)=0\)
\(\Leftrightarrow2cos^22x.sinx=0\)
Phương trình vô nghiệm
Yêu cầu bài toán?