Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^m-2^n=256\)
\(\Rightarrow2^n.\left(2^{m-n}-1\right)=256\)
Do \(2^{m-n}-1\) chia 2 dư 1 mà \(256=2^8\)
\(\Rightarrow2^n=2^8;2^{m-n}-1=1\)
\(\Rightarrow n=8;2^{m-n}=2=2^1\)
\(\Rightarrow n=8;m-n=1\)
\(\Rightarrow n=8;m=9\)
Vậy \(m=9;n=8\)
bạn vô lik này nhé:
http://olm.vn/hoi-dap/question/164700.html
Nhớ tick cho mik
2m-2n=256 => 2m-2n-28= 0 => 28(2m-8-2n-8-1)=0.
Vì 28 >0 nên 2m-8 - 2n-8 -1 =0 => 2m-8 =2n-8 +1 (1)
- Nếu 2m-8 ko chia hết cho 2 thì 2n-8 >2 và 2m-8= 1 (trái với 1)
- Nếu 2m-8 chia hết 2 thì 2n-8 ko chia hết 2 => 2n-8 =1 => n-8 = 0 => n=8 => m=9.
Vậy m=9, n=8.
2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
- Nếu m-n =1 thì
2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
- Nếu m-n lớn hơn hoặc bằng 2 thì :
2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
2m - 2n = 256
<=> 2n(2m-n -1) = 28
Trường hợp 1 : m- n= 1
=> n=8 và m=9 (thỏa mãn
Trường hợp 2: m- n > hoặc = 2
=>2n(2m-n -1) là số lẻ. Mà là số chẵn ( mâu thuẫn)
Vậy n=8 và m=9
Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
* Nếu m-n =1 thì
2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
* Nếu m-n lớn hơn hoặc bằng 2 thì :
2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
Ta có : 2m - 2n = 256
Đặt m = n + k (Vì 2m > 2n) (k > 0 ; k \(\inℕ\))
Khi đó 2n.2k - 2n = 256
=> 2n(2k - 1) = 256
Vì k> 0 => 2k > 0 => 2k - 1 > 0 <=> k > 1
Mà 2k chẵn với k > 0
=> 2k - 1 lẻ với k > 1 (1)
Vì 2n(2k - 1) chẵn => 2k - 1 chẵn hoặc 2k - 1 = 1
mà xét vớ (1) ta chỉ nhận được 2k - 1 = 1
=> k = 1
=> n = 9
=> m = 10
Vậy n = 9 ; m = 10
\(2^m-2^n=256=2^8\)---> Chia 2 vế cho 2n
\(\Leftrightarrow2^{m-n}-1=2^{8-n}\)
\(\Leftrightarrow2^{m-n}-2^{8-n}=1\)
\(\Leftrightarrow2^{8-n}\left(2^{m-8}-1\right)=1\)---> Vì các lũy thừa với số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:
\(\hept{\begin{cases}2^{8-n}=1\\2^{m-8}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{8-n}=2^0\\2^{m-8}=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}8-n=0\\m-8=1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=8\\m=9\end{cases}}}\)
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\) (1)
có : \(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall x\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Ta có : 2m − 2n = 256 = 28
⇔28 = 2n(2m-n − 1)
Nếu m − n=0 (vô lý)
Nếu m − n > 0
⇒2m-n − 1 lẻ mà 28 chẵn ⇒
2m-n −1 = 1⇒ m = n+1⇒ 2m−n−1 = 1⇒m=n+1
⇒2n=28⇒n=8,m=9
Các bạn ơi giúp mình với