Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 32 < 2^n < 128
hay 2^5 < 2^n < 2^7
=> 5 < n < 7
=> n = 6
b) 2.16 \(\ge\)2^n > 4
hay 2^5 \(\ge\)2^n > 2^2
=> 5 \(\ge\)n > 2
=> n \(\in\left\{5;4;3\right\}\)
c) 9.27 \(\le\)3^n \(\le\) 243
hay 3^5 \(\le\)3^n \(\le\) 3^5
=> 5 \(\le\) n \(\le\) 5
=> n = 5
a,32<2^n<128
n sẽ bằng 6 vì khi 2^6=64>32 và 2^6=64 <128 (thỏa mãn điều kiện)
Vậy :n=6
lm tương tự
Tham khảo:D
Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
TH1: \(x\le-\frac{1}{2}\)
pt <=> \(\left[-\left(x-1\right)\right]-\left[-\left(2x+1\right)\right]=13\)<=>1-x+2x+1=13 <=> 2+x=13 <=> x=11 (loại)
TH2: \(-\frac{1}{2}< x\le1\)
pt <=> \(\left[-\left(x-1\right)\right]-\left(2x+1\right)=13\) <=> 1-x-2x-1=13 <=> -3x=13 <=> x=-13/3 (loại)
TH3: x > 1
pt <=> (x-1)-(2x+1)=13 <=> x-1-2x-1=13 <=> -x-2=13 <=> x=-15 (loại)
Vậy pt vô nghiệm
Ta có :
m = 2^9 = 512
n = 2^8 = 256
Ta lấy 2^9 - 2^8 = 512 - 256 = 256
Vậy : m = 9 , n = 8
Bạn k mình nha :)
Làm ơn, mình cần lời giải (a.k.a cách trình bày) chứ đâu cần cách tính :3