∈ N sao cho:

2m + 2n = 2m+n

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15\)

\(=6.a+12+3\)

\(=6.\left(x+2\right)+3\)

Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3

Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6

2) Ta có 3 là số lẻ nên 32018 là số lẻ

11 là số lẻ nên 112017 là số lẻ 

Do đó 32018-112017là số chẵn nên chia hết cho 2

3)\(n+4⋮n\)

có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

4)\(3n+7⋮n\)

có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

18 tháng 12 2015

a) A = 1 + 22 + 24 + ... + 22016

=> 4A = 22 + 24 + ... + 22018

=> 4A - A = 22018 - 1

=> 3A = 22018 -1

Theo bài ra : 3A + 1 = 2n

=> 22018 - 1 + 1 = 2n

=> 22018 = 2n

=> n = 2018

b) Ta có :

3n + 1 chia hết cho 2n - 3

=> 6n - 3n + 1 chia hết cho 2n - 3

=> 3.(2n-1) + 1 chia hết cho 2n - 3

=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}

=> 2n \(\in\) {4;6}

=> n \(\in\) {2;3}

13 tháng 9 2015

\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)

\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)

\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)

\(\left(x-5\right)^4=\left(x-5\right)^6\)

\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1

\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)

\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)

 

 

 

 

13 tháng 9 2015

nhìn hoa mắt luôn mà làm là đi bệnh viện

16 tháng 2 2020

Ta có :\(n^2-2=n.\left(n+3\right)-3n-2\)

                        \(=n.\left(n+3\right)-3.\left(n+3\right)+7\)

                        \(=\left(n+3\right).\left(n-3\right)+7\)

Ta thấy \(\left(n+3\right).\left(n-3\right):\left(n+3\right)\)

Để \(\left(n+3\right).\left(n-3\right)+7:\left(n+3\right)\) thì \(7:\left(n+3\right)\)

 \(\implies\)(n+3)\(\in\) Ư(7)= \(\{\) 1;-1;-7;7\(\} \)

 \(\implies \)n\(\in\) \(\{\) -2;-4;-10;4\(\}\)

17 tháng 6 2015

\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)

Chia hết cho 10 

(l ike nha)