Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để \(\frac{12n+1}{2n+3}\)là số nguyên thì \(\frac{17}{2n+3}\)là số nguyên
=> 2n+3\(\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
2n+3 | -17 | -1 | 1 | 17 |
n | -10 | -2 | -1 | 7 |
Ta có : 12n + 1 chia hết cho 2n + 3
\(\Rightarrow\)( 12n + 18 ) - 17 chia hết cho 2n + 3
\(\Leftrightarrow\)6( 2n + 3) - 17 chia hết cho 2n + 3
mà 6( 2n + 3) luôn chia hết cho 2n + 3
\(\Rightarrow\)17 chia hết cho 2n + 3
\(\Rightarrow\) 2n + 3 \(\in\)Ư ( 17) = { -1, 1 , -17 , 17 }
ta có bảng sau:
2n + 3 | -1 | 1 | 17 | -17 |
n | -2 | -1 | 7 | -10 |
Mà n \(\ge\)1 \(\Rightarrow\)n = 7
Vậy n = 7
3n=27<=>n=27:3=9(TM)
2n=625<=>n=625:2=32,5(KTM VÌ n LÀ SỐ TỰ NHIÊN)
12n=144<=>n=144:12=12(TM)
2n.16=128<=>n=128;16:2=4(TM)
5n:29=27<=>n=27X29:5=156,6((KTM VÌ n LÀ SỐ TỰ NHIÊN)
(2n+1)=27<=>2n=27-1<=>2n=26<=>n=26:2=13
bạn tự kết luân nha
TM:thỏa mãn
KTM không thỏa mãn
ủng hộ mk nha mk bị âm điểm
Tìm n thuộc Z biết:
a) 4n + 1 / 2n+3
b ) 12n + 7/ 4n+7
c) 9n+4 / 3n+5
a) Ta có :4n+1 = 4n + 6 - 5 = 2(2n+3) - 5.Vì 2(2n+3) chia hết cho 2n+3 nên để thỏa mãn đề thì 5 chia hết cho 2n+3 => 2n+3 \(\in\left\{-5;-1;1;5\right\}\)=> 2n\(\in\left\{-8;-4;-2;2\right\}\)=> n\(\in\left\{-4;-2;-1;1\right\}\)
b) Ta có : 12n+7 = 12n + 21 - 14 = 3(4n+7) - 14.Vì 3(4n+7) chia hết cho 4n+7 nên để thỏa mãn đề thì 14 chia hết cho 4n+7 => 4n+7\(\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
=> 4n\(\in\left\{-21;-14;-9;-8;-6;-5;0;7\right\}\) => n\(\in\left\{-2;0\right\}\)
c) Ta có : 9n+4 = 9n + 15 - 11 = 3(3n+5) - 11.Vì 3(3n+5) chia hết cho 3n+5 nên để thỏa mãn đề thì 11 chia hết cho 3n+5 => 3n+5 \(\in\left\{-11;-1;1;11\right\}\)=> 3n \(\in\left\{-16;-6;-4;6\right\}\)=> n \(\in\left\{-2;2\right\}\)
12n + 1 = 12n + 18 - 17
= 6(2n + 3) - 17
Để (12n + 1) ⋮ (2n + 3) thì 17 ⋮ (2n + 3)
⇒ 2n + 3 ∈ Ư(17) = {-17; -1; 1; 17}
⇒ 2n ∈ {-20; -4; -2; 14}
⇒ n ∈ {-10; -2; -1; 7}
Mà n là số tự nhiên
n = 7
( 2 n + 7 ) ⋮ ( n + 1 )
vì ( n + 1 ) ⋮ ( n + 1 )
=> 2 ( n + 1 ) ⋮ ( n + 1 )
=> ( 2 n + 2 ) ⋮ ( n + 1 )
=> ( 2 n + 7 ) − ( 2 n + 2 ) ⋮ ( n + 1 )
=> ( 2 n + 7 − 2 n − 2 ) ⋮ ( n + 1 )
=> 5 ⋮ ( n + 1 )
=> ( n + 1 ) ∈ Ư ( 5 ) = { ± 1 ; ± 5 }
Ta Có Bảng Sau:
n + 1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
Vậy n thuộc {0,4}