K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f'(x)=(m-1)*x^2+2

Đặt f'(x)=0

=>\(x^2=\dfrac{-2}{m-1}\)

=>\(x=\pm\sqrt{-\dfrac{2}{m-1}}\)

Để phương trình có nghiệm dương thì m-1<0

=>m<1

NV
24 tháng 10 2020

3.

Theo điều kiện của pt lượng giác bậc nhất:

\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)

\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)

\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)

4.

\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)

\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)

\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)

\(\Leftrightarrow sinx=1-m^2\)

\(\Rightarrow-1\le1-m^2\le1\)

\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)

NV
24 tháng 10 2020

1.

Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?

2.

ĐKXĐ: \(sinx\ne0\)

\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
8 tháng 5 2020

\(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm thỏa mãn \(x_1< k< x_2\) khi và chỉ khi \(a.f\left(k\right)< 0\)

Đây là nguyên lý của tam thức bậc 2 từ lớp 10 thì phải

Phương Anh Đỗ

NV
8 tháng 5 2020

Nhìn đề đoán là \(y=\frac{1}{3}mx^3+mx^2+\left(m+1\right)x+2\)

\(y'=mx^2+2mx+m+1\)

a/ Với \(m=0\) thỏa mãn

Với \(m\ne0\) để \(y'>0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-m\left(m+1\right)< 0\end{matrix}\right.\) \(\Rightarrow m>0\)

b/ Để \(y'=0\) có 2 nghiệm trái dấu

\(\Leftrightarrow m\left(m+1\right)< 0\Rightarrow-1< m< 0\)

c/ \(\left\{{}\begin{matrix}\Delta'=-m>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{m+1}{m}>0\end{matrix}\right.\) \(\Rightarrow m< -1\)

d/ \(x_1< 1< x_2\)

\(\Rightarrow m.y'\left(1\right)< 0\)

\(\Leftrightarrow m\left(m+2m+m+1\right)< 0\)

\(\Leftrightarrow m\left(4m+1\right)< 0\Rightarrow-\frac{1}{4}< m< 0\)

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là? 2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là? 3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\) 4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là? 5. Nghiệm...
Đọc tiếp

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?

2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?

3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)

4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?

5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?

6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?

7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?

8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?

9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?

10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?

11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)

11
16 tháng 8 2020

Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?

NV
16 tháng 8 2020

Vì mình lấy giá trị nguyên bạn

Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)

\(\Rightarrow-0,25< k< 321,243\) (1)

Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)

NV
27 tháng 10 2020

1.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)

\(\Leftrightarrow8m.sin2x-3cos2x=5\)

Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)

\(\Leftrightarrow...\)

NV
26 tháng 10 2020

1.

ĐKXĐ: \(sin\left(2x+\frac{\pi}{7}\right)\ne0\)

\(\Leftrightarrow2x+\frac{\pi}{7}\ne k\pi\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow1-cos2x+m.sin2x=2m\)

\(\Leftrightarrow m.sin2x-cos2x=2m-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt vô nghiệm khi:

\(m^2+\left(-1\right)^2< \left(2m-1\right)^2\)

\(\Leftrightarrow...\)

3.

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\Leftrightarrow...\\cos2x+2sin2x=10\left(1\right)\end{matrix}\right.\)

Xét (1), ta có \(1^2+2^2< 10^2\) nên (1) vô nghiệm

b.

\(3cosx+2cos^2x-1-\left(4cos^3x-3cosx\right)+1=4sin^2x.cosx\)

\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx\left(1-cos^2x\right)\)

\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx-4cos^3x\)

\(\Leftrightarrow2cos^2x+2cosx=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)=0\)

26 tháng 6 2018

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-1\right)^3\left(x-2\right)+2x-3\)

\(f\left(1\right)=-1\\ f\left(2\right)=1\\ \Rightarrow f\left(1\right).f\left(2\right)=-1< 0\)

\(\Rightarrow\)phương trình có nghiệm \(\in\left(1;2\right)\) với mọi m

NV
13 tháng 4 2020

Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x+2\right)+2x+3\)

Do \(f\left(x\right)\) là hàm đa thức nên hiển nhiên nó liên tục trên R

Ta có: \(f\left(1\right)=5\) ; \(f\left(-2\right)=-1\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\) với mọi m

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

13 tháng 4 2020

Em cảm ơn ạ !