Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$
$\Leftrightarrow (n-1)^2+2019=a^2$
$\Leftrightarrow 2019=(a-n+1)(a+n-1)$
Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$
$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$
Mà tích của chúng bằng $2019$ nên ta có các TH sau:
TH1: $a+n-1=2019; a-n+1=1$
$\Rightarrow n=1010$ (tm)
TH2: $a+n-1=673, a-n+1=3$
$\Rightarrow n=336$
a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1
Khi đó
\(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)
\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)
\(=4\left(ab+bc+ca+a+b+c\right)+3\)
Vậy thì mn + np + pm chia 4 dư 3.
b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:
Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4
Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.
Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.
Đặt \(A=n^2-4n+7\) .
1. Với n = 0 => A = 7 không là số chính phương (loại)
2. Với n = 1 => A = 4 là số chính phương (nhận)
3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)
\(\Rightarrow\left(n-2\right)^2< A< n^2\)
Vì A là số tự nhiên nên \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)
Thử lại, n = 3 => A = 4 là một số chính phương.
Vậy : n = 1 và n = 3 thoả mãn đề bài .
m=(2k+1)2;n=(2k+3)2m=(2k+1)2;n=(2k+3)2 (k thuộc N)
⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)
Do k;k+1;k+2k;k+1;k+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
⇒16k(k+2)(k+1)2⋮3⇒16k(k+2)(k+1)2⋮3
+ k chẵn ⇒k(k+2)⋮4⇒k(k+2)⋮4
+k lẻ ⇒(k+1)2⋮4⇒(k+1)2⋮4
⇒16k(k+2)(k+1)2⋮64⇒16k(k+2)(k+1)2⋮64
mn−m−n+1⋮192