Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
wtf ý nào k làm dc thì up nên chứ up hết bài nên cho người ta làm hộ thì có học được cái j đâu
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
Bài 1:
Hàm đồng biến khi mà \(y'=x^2-2mx-2\geq 0\forall x\in\mathbb{R}\)
\(\Leftrightarrow \Delta'=m^2+2\leq 0\). Điều này vô lý nên không tồn tại $m$ thỏa mãn
Bài 2:
Hàm đồng biến khi mà \(y'=-\frac{4x^2+4x+3+2m}{(2x+1)^2}\geq 0\) với mọi $x$ thuộc TXĐ
\(\Leftrightarrow 4x^2+4x+3+2m\leq 0\forall x\in\mathbb{R}\setminus \frac{-1}{2}\)
\(\Leftrightarrow m\leq -2(x^2+2x+1,5)\Leftrightarrow m\leq \min (-2x^2-2x-1,5)\)
Điều này vô lý vì không tồn tại min của \(-2x^2-2x-1,5\forall x\in\mathbb{R}\setminus\frac{-1}{2}\)
Vậy không tồn tại $m$ thỏa mãn.
Đặt \(cotx=t\Rightarrow\) khi x chạy từ \(\dfrac{\pi}{4}\rightarrow\dfrac{\pi}{2}\) thì \(t\) chạy từ 1 về 0
Do đó, nếu \(f\left(x\right)\) đồng biến thì \(f\left(t\right)=\dfrac{2t+1}{t+m}\) nghịch biến trên \(\left(0;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\\left[{}\begin{matrix}-m< 0\\-m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \dfrac{1}{2}\\m< -1\end{matrix}\right.\)
Hàm \(f\left(t\right)\) là hàm bậc nhất trên bậc nhất nên nó nghịch biến khi ad-bc<0
Hơn nữa, 1 điều cần rất chú ý trong loại toán tìm khoảng (a;b) nghịch biến cho hàm bậc nhất trên bậc nhất là là nghiệm của phương trình "mẫu thức = 0" cần né khoảng này ra. Ví dụ, để hàm \(f\left(t\right)\) đồng biến trên (0;1) thì trước hết nó phải liên tục, ko bị gián đoạn trên đoạn này
Mà pt mẫu \(t+m=0\) có nghiệm \(t=-m\)
Nên \(-m\) phải nằm ngoài khoảng \(\left(0;1\right)\) tức \(-m< 0\) hoặc \(-m>1\)
Bạn hiểu chưa ạ?
\(I=\int\dfrac{x^3dx}{\left(x^8-4\right)^2}\)
Đặt \(x^4=t\Rightarrow x^3dx=\dfrac{1}{4}dt\Rightarrow I=\dfrac{1}{4}\int\dfrac{dt}{\left(t^2-2\right)^2}=\dfrac{1}{4}\int\dfrac{dt}{\left(t-\sqrt{2}\right)^2\left(t+\sqrt{2}\right)^2}\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)^2dt=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{2}{\left(t+\sqrt{2}\right)\left(t-\sqrt{2}\right)}\right)dt\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)\right)dt\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|\right)+C\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{x^4-\sqrt{2}}-\dfrac{1}{x^4+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{x^4-\sqrt{2}}{x^4+\sqrt{2}}\right|\right)+C\)
2/ \(I=\int\dfrac{\left(2x+1\right)dx}{\left(x^2+x-1\right)\left(x^2+x+3\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{x^2+x-1}-\dfrac{1}{x^2+x+3}\right)\left(2x+1\right)dx\)
\(=\dfrac{1}{4}\int\left(\dfrac{2x+1}{x^2+x-1}-\dfrac{2x+1}{x^2+x+3}\right)dx\)
\(=\dfrac{1}{4}\left(\int\dfrac{d\left(x^2+x-1\right)}{x^2+x-1}-\int\dfrac{d\left(x^2+x+3\right)}{x^2+x+3}\right)\)
\(=\dfrac{1}{4}ln\left|\dfrac{x^2+x-1}{x^2+x+3}\right|+C\)
3/ Đặt \(\sqrt[3]{x}=t\Rightarrow x=t^3\Rightarrow dx=3t^2dt\)
\(\Rightarrow I=\int\dfrac{3t^2.sint.dt}{t^2}=3\int sint.dt=-3cost+C=-3cos\left(\sqrt[3]{x}\right)+C\)
4/ \(I=\int\dfrac{dx}{1+cos^2x}=\int\dfrac{\dfrac{1}{cos^2x}dx}{\dfrac{1}{cos^2x}+1}\)
Đặt \(t=tanx\Rightarrow\left\{{}\begin{matrix}dt=\dfrac{1}{cos^2x}dx\\\dfrac{1}{cos^2x}=1+tan^2x=1+t^2\end{matrix}\right.\)
\(\Rightarrow I=\int\dfrac{dt}{1+t^2+1}=\int\dfrac{dt}{t^2+2}=\dfrac{1}{2}\int\dfrac{dt}{\left(\dfrac{t}{\sqrt{2}}\right)^2+1}\)
\(=\dfrac{1}{2}.\sqrt{2}.arctan\left(\dfrac{t}{\sqrt{2}}\right)+C=\dfrac{1}{\sqrt{2}}arctan\left(\dfrac{tanx}{\sqrt{2}}\right)+C\)
5/ \(I=\int\dfrac{sinx+cosx}{4+2sinx.cosx-sin^2x-cos^2x}dx=\int\dfrac{sinx+cosx}{4-\left(sinx-cosx\right)^2}dx\)
Đặt \(sinx-cosx=t\Rightarrow\left(cosx+sinx\right)dx=dt\)
\(\Rightarrow I=\int\dfrac{dt}{4-t^2}=-\int\dfrac{dt}{\left(t-2\right)\left(t+2\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{t+2}-\dfrac{1}{t-2}\right)dt\)
\(=\dfrac{1}{4}ln\left|\dfrac{t+2}{t-2}\right|+C=\dfrac{1}{4}ln\left|\dfrac{sinx-cosx+2}{sinx-cosx-2}\right|+C\)
Ơ bài 1 nhầm số 4 thành số 2 rồi, bạn sửa lại 1 chút nhé :D
Còn 1 cách làm khác nữa là lượng giác hóa
Đặt \(x^4=2sint\Rightarrow x^3dx=\dfrac{1}{2}cost.dt\)
\(\Rightarrow I=\dfrac{1}{2}\int\dfrac{cost.dt}{\left(4sin^2t-4\right)^2}=\dfrac{1}{32}\int\dfrac{cost.dt}{cos^4t}=\dfrac{1}{32}\int\dfrac{dt}{cos^3t}\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{cost}\\dv=\dfrac{dt}{cos^2t}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{sint.dt}{cos^2t}\\v=tant\end{matrix}\right.\)
\(\Rightarrow32I=\dfrac{tant}{cost}-\int\dfrac{tant.sint.dt}{cos^2t}=\dfrac{sint}{cos^2t}-\int\dfrac{sin^2t.dt}{cos^3t}\)
\(=\dfrac{sint}{1-sin^2t}-\int\dfrac{1-cos^2t}{cos^3t}dt=\dfrac{sint}{1-sin^2t}-\int\dfrac{dt}{cos^3t}+\int\dfrac{1}{cosx}dx\)
Chú ý rằng \(\int\dfrac{dt}{cos^3t}=32I\)
\(\Rightarrow32I=\dfrac{sint}{1-sin^2t}-32I+\int\dfrac{cost.dt}{cos^2t}\)
\(\Rightarrow64I=\dfrac{sint}{1-sin^2t}-\int\dfrac{d\left(sint\right)}{sin^2t-1}=\dfrac{sint}{1-sin^2t}-\dfrac{1}{2}ln\left|\dfrac{sint-1}{sint+1}\right|+C\)
\(\Rightarrow I=\dfrac{1}{64}\left(\dfrac{2x^4}{4-x^8}-\dfrac{1}{2}ln\left|\dfrac{x^4-2}{x^4+2}\right|\right)+C\)
Lời giải:
Ta có: \(y=\frac{x^2-m^2+2m+1}{x-m}=x+m+\frac{2m+1}{x-m}\)
\(\Rightarrow y'=1-\frac{2m+1}{(x-m)^2}\)
Để hàm số đồng biến trên khoảng xác định của nó thì \(y\geq 0, \forall x\in \text{MXĐ}\)
\(\Leftrightarrow 1-\frac{2m+1}{(x-m)^2}\geq 0\)
\(\Leftrightarrow (x-m)^2-(2m+1)\geq 0\)
\(\Leftrightarrow x^2-2mx+(m^2-2m-1)\geq 0\)
Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi:
\(\Delta'=m^2-(m^2-2m-1)\leq 0\)
\(\Leftrightarrow m\leq \frac{-1}{2}\)
Đáp án D
y'=\(\dfrac{m\left(3x-m+1\right)-\left(mx+5\right)\cdot3}{\left(3x-m+1\right)^2}=\dfrac{-m^2+m-15}{\left(3x-m+1\right)^2}\)
Để y đồng biến trên R thì y'\(\ge\)0 <=>-m2+m-15\(\ge\)0(do mẫu luôn lớn hơn hoặc bằng 0
Mà
-m2+m-15\(=-\dfrac{59}{4}-\left(m-\dfrac{1}{2}\right)^2< 0\)với mọi m
=>không tồn tại m để y luôn đồng biến