K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

\(x-\sqrt{x}=m\Leftrightarrow x-\sqrt{x}-m=0\)

\(\Delta=1-4\left(-m\right)=1+4m\)

Để phương trình trên có nghiệm khi \(\Delta\ge0\)

\(1+4m\ge0\Leftrightarrow m\ge-\frac{1}{4}\)

20 tháng 4 2021

a thay vào mà tính, dễ rồi nên mình ko làm nữa nhé

b, Để phương trình  có 2 nghiệm phân biệt thì delta > 0 

hay \(4m^2-4\left(m-2\right)\left(m-4\right)=4m^2-4\left(m^2-6m+8\right)=6m-8>0\)

\(\Leftrightarrow-8>-6m\Leftrightarrow m>\dfrac{4}{3}\)

c, Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-4}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-2}{m-4}\end{matrix}\right.\)

Lại có: \(\left(x_1+x_2\right)^2=\dfrac{4m^2}{\left(m-4\right)^2}\Rightarrow x_1^2+x_2^2=\dfrac{4m^2}{\left(m-4\right)^2}-2x_1x_2\)

\(=\dfrac{4m^2}{\left(m-4\right)^2}-\dfrac{2m-4}{m-4}=\dfrac{4m^2-\left(2m-4\right)\left(m-4\right)}{\left(m-4\right)^2}\)

\(=\dfrac{4m^2-2m^2+12m-16}{\left(m-4\right)^2}=\dfrac{2m^2+12m-16}{\left(m-4\right)^2}\)

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4\left(m^2-4m+6\right)>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Theo đề, ta có: \(\left(\sqrt{x_1}-\sqrt{x_2}\right)^2=4\)

\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)

\(\Leftrightarrow2m-2-2\sqrt{2m-5}=4\)

\(\Leftrightarrow2\sqrt{2m-5}=2m-6\)

\(\Leftrightarrow\sqrt{2m-5}=m-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-6m+9-2m+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-8m+14=0\end{matrix}\right.\)

Đến đây thì dễ rồi, bạn chỉ cần giải pt bậc hai rồi đối chiếu với đk là xong

24 tháng 1 2022

câu a thì làm ntn ạ

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy 

2: \(\text{Δ}=\left(m-4\right)^2-4\left(-m+3\right)\)

\(=m^2-8m+16+4m-12\)

\(=m^2-4m+4=\left(m-2\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-x_2=2\\x_1+x_2=-m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=6-m\\x_2=3x_1-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{6-m}{4}\\x_2=\dfrac{3\left(6-m\right)}{4}-2=\dfrac{18-3m-8}{4}=\dfrac{10-3m}{4}\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+3\)

\(\Leftrightarrow\left(m-6\right)\left(3m-10\right)=16\left(-m+3\right)\)

\(\Leftrightarrow3m^2-30m-18m+60+16m-48=0\)

\(\Leftrightarrow3m^2-32m+12=0\)

\(\text{Δ}=\left(-32\right)^2-4\cdot3\cdot12=880>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{32-4\sqrt{55}}{6}=\dfrac{16-2\sqrt{55}}{3}\\x_2=\dfrac{16+2\sqrt{55}}{3}\end{matrix}\right.\)

\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m+2-\sqrt{2}\right)\)

\(=4m^2-8m+4-8m-8+8\sqrt{2}\)

\(=4m^2-16m+8\sqrt{2}-4\)

Để phương trình có nghiệm kép thì \(4m^2-16m+8\sqrt{2}-4=0\)

=>\(m^2-4m+2\sqrt{2}-1=0\)

=>\(\Delta=\left(-4\right)^2-4\left(2\sqrt{2}-1\right)=16-8\sqrt{2}+4=20-8\sqrt{2}>0\)

=>Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m=\dfrac{4-\sqrt{20-8\sqrt{2}}}{2}=2-\sqrt{5-2\sqrt{2}}\\m=2+\sqrt{5-2\sqrt{2}}\end{matrix}\right.\)

26 tháng 1 2022

a, đk : x > = 0 

Ta có : \(P=\dfrac{x-\sqrt{x}+1}{x+1}=\dfrac{m\sqrt{x}}{x+1}\Rightarrow x-\sqrt{x}+1=m\sqrt{x}\)

\(\Leftrightarrow x-\left(m+1\right)\sqrt{x}+1=0\)

Đặt \(\sqrt{x}=t\)khi đo x = t^2 

\(t^2-\left(m+1\right)t+1=0\)

Để pt có 2 nghiệm pb khi 

\(\Delta=\left(m+1\right)^2-4=m^2+2m-3>0\)

26 tháng 1 2022

bổ sung dòng cuối nhé 

\(=m^2+2m-3=m^2+2m+1-4=\left(m+1\right)^2-4\)

\(=\left(m-1\right)\left(m+3\right)>0\)

TH1 : \(\left\{{}\begin{matrix}m-1>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m>-3\end{matrix}\right.\Leftrightarrow m>1\)

TH2 : \(\left\{{}\begin{matrix}m-1< 0\\m+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m< -3\end{matrix}\right.\Leftrightarrow m< -3\)