Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tiếp tuyến d của đồ thị hàm số tại điểm có hoành độ x = -1, có dạng :
\(y=\left(m+1\right)x+\frac{m}{2}+1\)
D song song với đường thẳng y = 5x\(\Leftrightarrow\begin{cases}m+1=5\\\frac{m}{2}+1\ne0\end{cases}\)\(\Leftrightarrow m=4\)
Vậy m = 4 là giá trị cần tìm
a/
\(y'=-\frac{4}{\left(x-2\right)^2}\Rightarrow\left\{{}\begin{matrix}y'\left(3\right)=-4\\y\left(3\right)=6\end{matrix}\right.\)
Pt tiếp tuyến: \(y=-4\left(x-3\right)+6\Leftrightarrow y=-4x+18\)
b.
\(y'=\frac{-5}{\left(x-1\right)^2}\)
Tiếp tuyến song song với \(y=-5x-3\) nên có hệ số góc \(k=-5\)
\(\Rightarrow\frac{-5}{\left(x-1\right)^2}=-5\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn
Ta có \(M\left(-1;-2\right)\)
Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)
hay \(\Delta:y=9x+7\)
\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)
a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :
\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)
Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm
Vậy không tồn tại m thỏa mãn yêu cầu bài toán
b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)
Suy ra \(y'\ge m-\frac{7}{3}\)
Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)
Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)
Tập xác định \(D=R\backslash\left\{2-m\right\}\)
Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)
a) Tiếp tuyến tại điểm có hoành độ x = 1 song song với đường thẳng :
\(y=x+1\) khi \(y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(x+m-2\right)^2}=-1\Leftrightarrow m=0;m=2\)
* Với m = 0 ta có phương trình tiếp tuyến \(y=-\left(x-1\right)-1=-x\)
* Với m = 2 ta có phương trình tiếp tuyến \(y=-\left(x-2\right)+3=-x+5\)
Vậy m = 0 là giá trị cần tìm
b) G\(m\ge1+\sqrt{2};m\le1-\sqrt{2}\)ọi \(M\left(x_0;y_0\right)\) là tiếp điểm. Ta có \(y'\left(x_0\right)=-\frac{1}{2}\)
\(\frac{m^2-2m-1}{\left(x_0+m-2\right)^2}=-\frac{1}{2}\) (*)
Yêu cầu bài toán suy ra (*) vô nghiệm, điều đó xảy ra khi :
\(m^2-2m-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}m\ge1+\sqrt{2}\\m\le1-\sqrt{2}\end{array}\right.\)
Vậy giá trị cần tìm là \(m\le1-\sqrt{2};m\ge1+\sqrt{2}\)
Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d
\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)
Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)
Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của \(\Delta\)
Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow m^2+20m+25=0\)
\(\Leftrightarrow m=-10\pm5\sqrt{3}\)
Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)
Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)
\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)
a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :
\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)
* \(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)
* \(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)
b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)
Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :
\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)
\(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)
* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào
* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)
+ Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến
+ Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào
Hai điểm cực trị của \(\left(C_1\right)\) là : \(A\left(0;3\right);B\left(2;-1\right)\Rightarrow\overrightarrow{AB}=\left(2;-4\right)\)
Phương trình AB : \(2x+y-3=0\)
Ta có : \(y'=3x^2-6mx+3\left(m-1\right)\)
\(x_0=1\Rightarrow y_0=2m-1;y'\left(x_0\right)=-3m\)
Phương trình tiếp tuyến \(\Delta:y=-3m\left(x-1\right)+2m-1\)
hay \(3mx+y-5m+1=0\)
Yêu cầu bài toán \(\Leftrightarrow\cos\left(AB;\Delta\right)=\cos60^0=\frac{1}{2}\)
\(\Leftrightarrow\frac{\left|6m+1\right|}{\sqrt{5\left(9m^2+1\right)}}=\frac{1}{2}\Leftrightarrow4\left(6m+1\right)^2=5\left(9m^2+1\right)\)
\(\Leftrightarrow99m^2+48m-1=0\)
\(\Leftrightarrow m=\frac{-8\pm5\sqrt{3}}{33}\) là những giá trị cần tìm
Ta có \(y'=3x^2-6x\)
Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)
Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)
Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)
\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)
Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán