\(x^2-2mx+4m-3=0\) có nghiệm tm: \(_{x^2_1+x^2_2=6}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

tính △ nx bn ơi !! ko có sao bk bt có 2 nghiệm !!

thiếu trừ 50% điểm của bài nha !!

13 tháng 8 2020

hehe. MK quên

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

9 tháng 4 2018

tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt

áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên 

rồi kết luận

9 tháng 4 2018

\(x^2+2\left(m+2\right)x+4m-1=0\)    \(\left(1\right)\)  

\(\Delta'=\left(m+2\right)^2-4m+1\)

\(\Delta'=m^2+4m+4-4m+1\)

\(\Delta'=m^2+5>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm pb \(\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)

theo bài ra \(x^2_1+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)

\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)

\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)

\(\Leftrightarrow4m^2+16m+16-8m-28=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow m^2+2m-3=0\)  \(\left(#\right)\)

từ \(\left(#\right)\)  ta có \(a+b+c=1+2-3=0\)

\(\Rightarrow pt\left(#\right)\)  có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) ) 

vậy....

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 2:

Để pt có 2 nghiệm phân biệt thì:

$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$

Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)

Khi đó:

\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)

\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)

$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$

$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$

\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)

\(\Rightarrow m=-3\) (thỏa mãn)

Vậy........

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 1:

Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$

Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)

Khi đó:

\(|x_1^3-x_2^3|=10\sqrt{2}\)

\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)

\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)

\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)

\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)

Vậy........

1 tháng 5 2021

\(x^2-\left(2m+1\right)x+m^2+m-6=0\)

\(\Delta=\left(2m+1\right)^2-4m^2-4m+24\)

\(=4m^2+4m+1-4m^2-3m+24\)

\(=25>0\)

\(\Rightarrow\)pt luôn có hai nghiệm phân biệt \(x_1,x_2\)\(\forall m\)

Theo hệ thức Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{cases}}\)

Ta có: \(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)

                                  \(=\left(x_1+x_2\right)^2-4x_1x_2\)

                                  \(=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)

\(\Rightarrow x_1-x_2=\pm5\)

Ta có\(\left|x_1^2-x_2^2\right|=5\)

\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}\left|10m+5\right|=50\\\left|-10-5\right|=50\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}10m+5=50\\-10m-5=50\end{cases}}\)

( chỗ này mình ko biết trình bày đúng không vì có phá giá trị tuyệt đối thì nó vẫn là hoán vị thôi )

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{9}{2}\\m=\frac{-11}{2}\end{cases}}\)

Vậy \(m\in\left\{\frac{9}{2};\frac{-11}{2}\right\}\)để ...

( check hộ mình nha )

6 tháng 8 2015

a/

PT có nghiệm \(x=\sqrt{2}\Rightarrow\left(m-1\right).2-2m.\sqrt{2}+m-2=0\)

\(\Leftrightarrow\left(3-2\sqrt{2}\right)m=4\Leftrightarrow m=\frac{4}{3-2\sqrt{2}}\)

b/

\(\left(m-1\right)x^2-2mx+m-2=0\text{ (1)}\)

\(+m-1=0\Leftrightarrow m=1\text{ thì }\left(1\right)\text{ trở thành }-2x+1-2=0\Leftrightarrow x=-\frac{1}{2}\)(loại do chỉ có 1 nghiệm)

\(+m-1\ne0\Leftrightarrow m\ne1\)

\(\left(1\right)\text{ là một phương trình bậc 2 ẩn }x.\)

\(\left(1\right)\text{ có 2 nghiệm phân biệt }\Leftrightarrow\Delta'=m^2-\left(m-1\right)\left(m-2\right)>0\)

\(\Leftrightarrow3m-2>0\Leftrightarrow m>\frac{2}{3}\)

20 tháng 1 2017

Ta có để pt có 2 nghiệm phân biệt thì:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)

\(\Leftrightarrow m< 2\)

Theo vi-et ta có

\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)

Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)

\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow19m+52=0\)

\(\Leftrightarrow m=\frac{52}{19}\)(loại)

Không có m thỏa cái trên

PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé

20 tháng 1 2017

Mơn bạn nhiều <3

4 tháng 3 2016

a. Pt có 2 nghiệm phân biệt  =>>0 <=>b2-4ac>0 <=>(-6m+3)2-4.2.(-3m-1)>0<=>36m2-36m+9+24m+8>0 <=>36m2-12m+1+16>0

<=> (6m-1)2+16>0 với mọi m

Ta lại có 2 ngiệm âm => S=X1+X2<0 <=>-b/a<0 <=> (6m-3)/2<0 <=> 6m-3<0 <=> m<1/2

                                    P=X1.X2>0 <=> c/a >0 <=> (-3m+1)/2>0 <=> -3m+1>0 <=> m<1/3

Vậy Pt Pt có 2 nghiệm phân biệt đều âm khi m<1/2

b

4 tháng 3 2016

b.Ta có :X12+X22=(X1+X2)2-2X1X2=S2-2P=(-b/a)2-2c/a=(6m-3)2/4-2(-3m+1)/2. Ta quy đồng lên dc (36m2-36m+9+12m-4)/4=(36m2-24m+4+1)/4

=(6m-2)2/4+1/4 >=4 . Dấu "=" xảy ra khi 6m-2=0 <=> m=1/3