Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)
=>x^2-3x+2=0
=>x=2 hoặc x=1
b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)
Để phương trình có nghiệm thì \(\text{Δ}>=0\)
=>1-4m>=0
=>m<=1/4
Để phương trình vô nghiệm thì Δ<0
=>m>1/4
c: TH1: m=1
=>-2x+2=0
=>x=1
TH2: m<>1
\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)
\(=4+8m\left(m-1\right)\)
\(=8m^2-8m+4\)
Để phương trình có nghiệm thì Δ>=0
=>\(m\in R\)
Ta có : \(2x^2+\left(2m-1\right)x+m-1=0\left(a=2;b=2m+1;c=m-1\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-2m-1}{2};x_1x_2=\frac{m-1}{2}\)
Theo bài ra ta có : \(2x_1-3x_2=1\)Ta có hệ sau :
\(\hept{\begin{cases}2x_1-3x_2=1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}2x_1-3x_2=1\\3x_1+3x_2=\frac{-2m-1}{2}\end{cases}}}\)
\(\hept{\begin{cases}5x_1=-2m+1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-2m+1}{5}\left(1\right)\\x_1+x_2=\frac{-2m-1}{2}\left(2\right)\end{cases}}\)
Thay \(x_1\)vào pt 2 ta có : \(\frac{-2m+1}{5}+x_2=\frac{-2m-1}{2}\)
\(\Leftrightarrow\frac{-4m+2}{10}+\frac{10x_2}{10}=\frac{-10m-5}{10}\)Khử mẫu ta có pt mới : \(-4m+2+10x_2=-10m-5\)
\(10x_2=-6m-7\Leftrightarrow x_2=\frac{-6m-7}{10}\)
Vì \(x_1x_2=\frac{m-1}{2}\)nên \(\frac{-6m-7}{10}.\frac{-2m+1}{5}=\frac{12m^2+8m-7}{50}\)
Đặt \(\frac{12m^2+8m-7}{50}=\frac{m-1}{2}\Leftrightarrow\frac{12m^2+8m-7}{50}=\frac{25m-25}{50}\)
Khử mẫu ta ddc : \(12m^2+8m-7-25m+25=0\)
\(\Leftrightarrow12m^2-17m+18=0\) Ta có : \(\Delta=\left(-17\right)^2-4.12.18=289-864< 0\)
Sai đâu tớ chịu :v
2x2 - 2( 2m - 1 ) + m = 0
Để phương trình có hai nghiệm thì Δ > 0
=> [ -2( 2m - 1 ) ]2 - 8m > 0
<=> 4( 2m - 1 )2 - 8m > 0
<=> 4( 4m2 - 4m + 1 ) - 8m > 0
<=> 16m2 - 16m + 4 - 8m > 0
<=> 16m2 - 24m + 4 > 0
<=> 4m2 - 6m + 1 > 0
<=> ( 4m2 - 6m + 9/4 ) - 5/4 > 0
<=> \(\left(2m-\frac{3}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2>0\)
<=> \(\left(2m-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(2m-\frac{3}{2}+\frac{\sqrt{5}}{2}\right)>0\)
<=> \(\left(2m-\frac{3+\sqrt{5}}{2}\right)\left(2m-\frac{3-\sqrt{5}}{2}\right)>0\)
Đến đây bạn xét hai TH cùng dấu là ra
=> \(\orbr{\begin{cases}m< \frac{3-\sqrt{5}}{4}\\m>\frac{3+\sqrt{5}}{4}\end{cases}}\)thì phương trình có hai nghiệm