Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2m-4\right)x=3\)
Để pt có nghiệm \(\Leftrightarrow2m-4\ne0\Rightarrow m\ne2\)
Để pt vô nghiệm \(\Leftrightarrow2m-4=0\Leftrightarrow m=2\)
Lần sau ghi có chủ ngữ, vị ngữ vào, ng ta mới hiểu, mới mở đầu câu đã ghi dấu \(\Leftrightarrow\) ai mà mà hiểu
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x^2-2mx+1=m^2-4m+4\\m-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2mx-m^2+4m-4=0\left(1\right)\\m\ge2\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm và \(m\ge2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=2\left(m-1\right)^2+2\ge0\\m\ge2\end{matrix}\right.\)
\(\Leftrightarrow m\ge2\)
ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm
- Với \(x\ge0\)
\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)
\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)
+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)
\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm
+ Với \(m^2-3m+2\ne0\)
\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương
\(\Rightarrow x_1x_2=m^2-3m+2< 0\)
\(\Rightarrow1< m< 2\)
\(x^3-2\left(m+1\right)x^2-\left(2m+5\right)x+10+12m=0\)
<=> \(\left(x-2\right)\left(x^2-2mx-5-6m\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-2mx-5-6m=0\left(1\right)\end{cases}}\)
Để phương trình ban đầu có 3 nghiệm phân biệt <=> phương trình (1) có 2 nghiệm phân biệt khác 2
<=> \(\hept{\begin{cases}\Delta'=m^2+5+6m>0\\2^2-2m.2-5-6m\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\in\left(-\infty;-5\right)v\left(-1;+\infty\right)\\m\ne-\frac{1}{10}\end{cases}}\)
ĐK: \(-\dfrac{1}{2}\le x\le3\)
\(pt\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}=6+m\)
Đặt \(\sqrt{-2x^2+5x+3}=t\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)
\(pt\Leftrightarrow6+m=f\left(t\right)=t^2+t\)
\(f\left(0\right)=0;f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{49+14\sqrt{2}}{8}\)
Yêu cầu bài toán thỏa mãn khi:
\(0\le6+m\le\dfrac{49+14\sqrt{2}}{8}\)
\(\Leftrightarrow-6\le m\le\dfrac{1+14\sqrt{2}}{8}\)