Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)
Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)
Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :
\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)
Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu.
a. x2 -6m + 2m + 5 =0 (có a=1 ; b=-6 ; c=2m+5)
Ta có Δ=b2 - 4ac ⇒ Δ=26-8m
Để pt có 2 nghiệm thì Δ≥0 ⇒ 26-8m≥0 ⇔ m≤\(\frac{-13}{4}\)
Vì pt có 2 nghiệm nên theo hệ thúc Vi-ét ta có: x1 + x2 = 6 ; x1x2=2m+5
Ta có: x12 + x22 = 26 ⇔ x12 + 2x1x2 + x22 - 2x1x2 = 26 ⇔ \(\left(x_1+x_2\right)^2\) - 2x1x2 = 26
Thay số: 62 - 2(2m+5) = 26 ⇒ 36 - 4m - 10 = 26 ⇒ 4m = 0 ⇒ m=0.
Vậy với m=0 thì ...........
a/ \(\Delta'=9-\left(2m+5\right)=4-2m\ge0\Rightarrow m\le2\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m+5\end{matrix}\right.\)
\(x_1^2+x_2^2=26\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=26\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-26=0\)
\(\Leftrightarrow6^2-2\left(2m+5\right)-26=0\)
\(\Leftrightarrow-4m=0\)
\(\Rightarrow m=0\) (thỏa mãn)
Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\)
Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)
\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)
\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)
\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)
\(< =>12m+6+36-4m-2>0\)
\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)
Vậy để m thỏa mãn đk trên thì \(m>-5\)
mình sửa đề trên là > 0 nhé
Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)
Để phương trình có 2 nghiệm x1; x2 điều kiện là:
\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)
Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)
<=> \(m^2+m-2=0\)
<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)=8m+24\ge0\Rightarrow m\ge-3\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{matrix}\right.\)
a/ \(A=x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=4\left(m+4\right)^2-5\left(m^2-8\right)\)
\(=-m^2+32m+104=360-\left(m-16\right)^2\le360\)
\(A_{max}=360\) khi \(m=16\)
\(B=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=4\left(m+4\right)^2-3\left(m^2-8\right)\)
\(=m^2+32m+88=\left(m+3\right)\left(m+29\right)+1\ge1\)
\(\Rightarrow B_{min}=1\) khi \(m=-3\)
b/ Từ Viet: \(\left\{{}\begin{matrix}\frac{x_1+x_2-8}{2}=m\\x_1x_2+8=m^2\end{matrix}\right.\)
\(\Rightarrow\left(\frac{x_1+x_2-8}{2}\right)^2=x_1x_2+8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm)
Pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-20m+20\ge0\)
\(\Leftrightarrow m^2-22m+21\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)
Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)
\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)
\(\Leftrightarrow1-2m+m^2=25m-25\)
\(\Leftrightarrow m^2-27m+26=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)
Vậy .........