\(\frac{4}{x^2}\)-4(x+\(\frac{2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

ĐKXĐ: \(x\ne0\)

Đặt \(x+\frac{2}{x}=t\Rightarrow\left(x+\frac{2}{x}\right)^2=t^2\Rightarrow x^2+4+\frac{4}{x^2}=t^2\Rightarrow x^2+\frac{4}{x^2}=t^2-4\)

\(\Rightarrow t^2-4-4t+m+1=0\)

\(\Leftrightarrow t^2-4t+m-3=0\)

Để pt có đúng nghiệm<=> \(\left\{{}\begin{matrix}\Delta'=0\\\left(x-1\right)^2>0\left(lđ\right)\end{matrix}\right.\Leftrightarrow4-m+3=0\Leftrightarrow m=7\)

NV
25 tháng 11 2019

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2m\left(x+\frac{1}{x}\right)-1=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow\left|t\right|\ge2\)

Phương trình trở thành: \(t^2-2mt-1=0\) (1)

Để pt đã cho có nghiệm \(\Leftrightarrow\left(1\right)\) có ít nhất 1 nghiệm thỏa mãn \(\left|t\right|\ge2\)

Do \(ac=-1< 0\Rightarrow\left(1\right)\) luôn luôn có 2 nghiệm phân biệt trái dấu

Đặt \(f\left(t\right)=t^2-2mt-1\)

Để (1) có 2 nghiệm thỏa mãn \(\left|t\right|\ge2\)

\(\Leftrightarrow f\left(2\right).f\left(-2\right)\le0\)

\(\Leftrightarrow\left(3+4m\right)\left(3-4m\right)\le0\Leftrightarrow\left[{}\begin{matrix}m\le-\frac{3}{4}\\m\ge\frac{3}{4}\end{matrix}\right.\)

13 tháng 11 2019

a/ \(\Leftrightarrow m^2x-m^2-x-m+2=0\)

\(\Leftrightarrow\left(m^2-1\right)x=m^2+m-2\)

Xét khi \(m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}0x=1+1-2=0\\0x=1-1-2=-2\left(l\right)\end{matrix}\right.\)

Vậy vs m= 1 pt vô số nghiệm (x>0)

Xét khi \(m^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow x=\frac{m^2+m-2}{m^2-1}\)

\(x>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)>0\\\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)< 0\\\left(m-1\right)\left(m+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)

b/ \(\Leftrightarrow mx-m-x+1+m-2=0\)

\(\Leftrightarrow\left(m-1\right)x=1\)

Vs \(m\ne1\)

\(\Rightarrow x=\frac{1}{m-1}\)

\(x\ge3\Rightarrow\frac{1}{m-1}\ge3\Leftrightarrow1\ge3m-3\Leftrightarrow m\le\frac{4}{3}\)

Xét \(m=1\Rightarrow0x=1\left(l\right)\)

Vậy vs \(m\le\frac{4}{3}\) thì pt có nghiệm vs x\(\ge3\)

c/ ĐKXĐ: \(9-x^2>0\Leftrightarrow\left(3-x\right)\left(3+x\right)>0\Leftrightarrow-3< x< 3\)

hmm, xem lại hộ cái đề boài nhoa, vế phải trên tử có dấu bằng là sao nhể? =))

3 tháng 12 2019

Camon bạn :))

22 tháng 6 2019

Lần sau em đăng trong link: h.vn để đc các bạn giúp đỡ nhé!

1. ĐK x >1

pt  \(\Leftrightarrow\frac{1}{\sqrt{x}-\sqrt{x-1}}\left(m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}\right)=1\)

\(\Leftrightarrow m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}=\sqrt{x}-\sqrt{x-1}\)

\(\Leftrightarrow m\sqrt{x\left(x-1\right)}+1-16\sqrt[4]{x^3\left(x-1\right)}=\sqrt{x\left(x-1\right)}-x+1\)

\(\Leftrightarrow\left(m-1\right)\sqrt{x\left(x-1\right)}-16\sqrt[4]{x^3\left(x-1\right)}+x=0\)

\(\Leftrightarrow\left(m-1\right)\sqrt{\frac{x-1}{x}}-16\sqrt[4]{\frac{x-1}{x}}+1=0\)

Đặt rồi đưa về phương trình bậc 2: \(\left(m-1\right)t^2-16t+1=0\) 

2. ĐK:...

  \(\sqrt{x-4-2\sqrt{x-4}+1}+\sqrt{x-4-2.\sqrt{x-4}.3+9}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}-1\right|+\left|\sqrt{x-4}-3\right|=m\)Tìm m để pt có đúng 2 nghiệm. Tự làm nhé!

\(3.\) ĐK:...

Đặt: \(\left(x^2-3x-4\right)=a\)

\(\sqrt{x+7}=b\)

Ta có: \(ab-m\left(a-b\right)-m^2=0\Leftrightarrow m^2+m\left(a-b\right)-ab=0\)

\(\Delta=\left(a-b\right)^2+4ab=\left(a+b\right)^2\)

pt có 2 nghiệm : \(\orbr{\begin{cases}m=\frac{b-a-\left(a+b\right)}{2}=-a\\m=\frac{b-a+\left(a+b\right)}{2}=b\end{cases}}\)

Khi đó: \(\orbr{\begin{cases}m=-\left(x^2-3x-4\right)\\m=\sqrt{x+7}\end{cases}}\)

pt <=> \(\left(m+x^2-3x-4\right)\left(m-\sqrt{x+7}\right)=0\)Tìm m để pt có nhiều nghiệm nhất .