Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)
Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)
Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :
\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)
Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu.