\(\sqrt{3}\)(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4\left(4m-4\right)=m^2+6m+9-16m+16=\left(m-5\right)^2\ge0\)

=> pt luôn có 2 nghiệm x1, x2

=> \(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{m+3-m+5}{2}=4\)

  \(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{m+3+m-5}{2}=m-1\)

Theo bài ra, ta có: \(\sqrt{x_1}+\sqrt{x_2}+x_1x_2=20\)

ĐK: \(x_1\ge0\)\(x_2\ge0\) <=> 4  \(\ge\) 0 và m - 1 \(\ge\)0 <=> m \(\ge\)1

<=> \(\sqrt{4}+\sqrt{m-1}+4\left(m-1\right)=20\)

<=> \(\sqrt{m-1}=22-4m\left(m\le\frac{11}{2}\right)\)

<=> \(m-1=16m^2-176m+484\)

<=> \(16m^2-177m+485=0\)

<=> \(16m^2-80m-97m+485=0\)

<=> \(\left(m-5\right)\left(16m-97\right)=0\)

<=> \(\orbr{\begin{cases}m=5\left(tm\right)\\m=\frac{97}{16}\left(ktm\right)\end{cases}}\)

Vậy ...

30 tháng 4 2019

bạn tìm đenta 

sau đó cho đenta >0 

theo hệ thức viets tính đc x1+x2, x1*x2

bình phương 2 vế của pt thỏa mãn thế x1, x2 tương ứng là tìm dc m

mik chỉ nêu ý chình thôi nha mik hơi bận

1 tháng 5 2019

mình cũng làm như vậy lúc biến đổi ra căn nhưng dưới căn không quy về hằng đẳng thức được 

bạn có nick face không ib gửi mình xem thử lời giải với ??

6 tháng 7 2019

\(2x^2-6x+2m-5=0\left(a=2;b=-6;c=2m-5\right)\)

\(\Delta=b'^2-ac=\left(-3\right)^2-2\left(2m-5\right)=19-4m\)

Để PT có hai nghiệm \(\Leftrightarrow\Delta>0\Leftrightarrow19-4m>0\Leftrightarrow m< \frac{19}{4}\)

Vậy với m < 19/4 thì PT có hai nghiệm

Áp dụng hệ thức vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{6}{2}=3\left(1\right)\\x_1x_2=\frac{c}{a}=\frac{2m-5}{2}\left(2\right)\end{cases}}\)

Theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=6\Rightarrow\frac{x_1+x_2}{x_1x_2}=6\left(3\right)\)

Thay (1) ; (2) vào (3) ta được:

\(\frac{3}{\frac{2m-5}{2}}=6\)

\(\Rightarrow\frac{6\left(2m-5\right)}{2}=3\)

\(\Rightarrow3\left(2m-5\right)=3\)

\(\Rightarrow2m-5=1\Rightarrow m=3\)(TMĐK m<19/4)

Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)

Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)

Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :

\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)

Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu.