Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
a ) \(2m-3m-6=0\)
\(\Leftrightarrow-m=6\)
\(\Leftrightarrow m=-6\)
Vậy ...
b ) \(\left|x-m\right|+\left|x^2+4x-5\right|=0\) (1)
Do \(\left\{{}\begin{matrix}\left|x-m\right|\ge0\\\left|x^2+4x-5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-m\right|+\left|x^2+4x-5\right|\ge0\) (2)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\left\{{}\begin{matrix}x-m=0\\x^2+4x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\\left(x+5\right)\left(x-1\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\\m=1\end{matrix}\right.\)
Vậy ...
a, \(2x-3m-6=0\)
\(\Leftrightarrow2x=3m+6\)
\(\Leftrightarrow x=\dfrac{3m+6}{2}\)
Vậy với \(\forall m\) thì pt luôn có nghiệm .
b, \(\left|x-m\right|+\left|x^2+4x-5\right|=0\)
Do \(\left\{{}\begin{matrix}|x-m|\ge0\\\left|x^2+4x-5\right|\ge0\end{matrix}\right.\)
Suy ra :
\(\left\{{}\begin{matrix}x-m=0\\x^2+4x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\\left(x+5\right)\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\\m=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-5\\m=1\end{matrix}\right.\) thì pt có nghiệm
- PT Vô nghiệm khi 2m-1=0 và 3m-5 \(\ne\) 0( Vì một cái bằng 0 cộng một cái khác 0 mà kết quả bằng 0 thì quá vô lí )
- <=>m=1/2 và m \(\ne\) 5/3
- Vậy PT vô nghiệm khi m=1/2
:))
Bài 5 :
Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)
\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)
\(\Leftrightarrow-9+m+3-1=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm
Bài 6 :
Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)
\(\Leftrightarrow2mx-4x+6=0\)
\(\Leftrightarrow2m-4+6=0\)
\(\Leftrightarrow2m+2=0\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm
a) Để (m-4)x+2-m=0 là phương trình bậc nhất ẩn x thì \(m-4\ne0\)
hay \(m\ne4\)
b) Để \(\left(m^2-4\right)x-m=0\) là phương trình bậc nhất ẩn x thì \(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
hay \(m\notin\left\{2;-2\right\}\)
c) Để \(\left(m-1\right)x^2-6x+8=0\) là phương trình bậc nhất ẩn x thì \(m-1=0\)
hay m=1
d) Để \(\dfrac{m-2}{m-1}x+5=0\) là phương trình bậc nhất ẩn x thì \(\dfrac{m-2}{m-1}\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ne1\end{matrix}\right.\)
a) m=-6
Ta có: 2m-3m-6 = 0 <=> -m-6=0<=>m=-6