K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 12 2021
\(PT\Leftrightarrow x^2+2x+3x=4x^2+4x+1\\ \Leftrightarrow3x^2+2x+1-3m=0\\ \text{PT có 2 nghiệm pb}\Leftrightarrow\Delta'>0\\ \Leftrightarrow1-3\left(1-3m\right)>0\\ \Leftrightarrow1+9m-1>0\Leftrightarrow m>0\)
20 tháng 12 2021
\(PT\Leftrightarrow x^2+2x+3m=4x^2+4x+1\\ \Leftrightarrow3x^2+2x+1-3m=0\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=1-3\left(1-3m\right)>0\)
\(\Leftrightarrow9m-2>0\\ \Leftrightarrow m>\dfrac{2}{9}\)
Vậy PT có 2 nghiệm pb \(\Leftrightarrow m>\dfrac{2}{9}\)
Lời giải:
Đặt $x^2+2x=t$ thì $t=(x+1)^2-1\geq -1$
PT ban đầu trở thành: $t^2-4mt+3m+1=0(*)$
Ta cần tìm $m$ để $(*)$ có nghiệm $t\geq -1$
Điều này xảy ra khi:
\(\left\{\begin{matrix} \Delta'=4m^2-3m-1\geq 0\\ t_1+t_2\geq -2\\ (t_1+1)(t_2+1)\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-1)(4m+1)\geq 0\\ 4m\geq -2\\ t_1t_2+(t_1+t_2)+1=3m+1+4m+1\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq 1 \text{ hoặc } m\leq \frac{-1}{4}\\ m\geq \frac{-1}{2}\\ m\geq \frac{-2}{7}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\geq 1\\ \frac{-2}{7}\leq m\leq \frac{-1}{4}\end{matrix}\right.\)