Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2=t\) \(\Rightarrow t^2+\left(1-m\right)t+2m-2=0\) (1)
Pt đã cho có 4 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(1-m\right)^2-8\left(m-1\right)>0\\t_1+t_2=m-1>0\\t_1t_2=2m-2>0\end{matrix}\right.\) \(\Rightarrow m>9\)
Khi đó, do vai trò của \(x_1;x_2;x_3;x_4\) như nhau, ko mất tính tổng quát, giả sử \(x_1=-\sqrt{t_1};x_2=\sqrt{t_1}\) ; \(x_3=-\sqrt{t_2};x_4=\sqrt{t_2}\)
\(\Rightarrow x_1x_2x_3x_4=t_1t_2\) ; \(x_1^2=x_2^2=t_1\) ; \(x_3^2=x_4^2=t_2\)
\(\Rightarrow\dfrac{x_1x_2x_3x_4}{2x_4^2}+\dfrac{x_1x_2x_3x_4}{2x_3^2}+\dfrac{x_1x_2x_3x_4}{2x_2^2}+\dfrac{x_1x_2x_3x_4}{2x_1^2}=2017\)
\(\Leftrightarrow\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_1}+\dfrac{t_1t_2}{2t_1}=2017\)
\(\Leftrightarrow t_1+t_2=2017\)
\(\Leftrightarrow m-1=2017\Rightarrow m=2018\)
Phương trình tương đương:
\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)
\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)
Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.
\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)
Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)
Nghiệm của chúng lần lượt là:
\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)
Lần lượt thay nghiệm vào điều kiện:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x+1\right)\left(x+3\right)=m\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x+3\right)=m\)
Đặt \(x^2+4x-5=t\ge-9\)
\(\Rightarrow t\left(t+8\right)-m=0\Leftrightarrow t^2+8t-m=0\) (1)
Để (1) có 2 nghiệm pb thỏa mãn \(t>-9\Rightarrow-16< m< 9\)
Gọi \(x_1;x_2\) là 2 nghiệm của \(x^2+4x-5-t_1=0\) ; \(x_3;x_4\) là 2 nghiệm của \(x^2+4x-5-t_2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-t_1-5\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x_3+x_4=-4\\x_3x_4=-t_2-5\end{matrix}\right.\)
Ta cũng có \(\left\{{}\begin{matrix}t_1+t_2=-8\\t_1t_2=-m\end{matrix}\right.\)
\(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=-1\Leftrightarrow\frac{-4}{-t_1-5}+\frac{-4}{-t_2-5}=-1\)
\(\Leftrightarrow4\left(t_1+t_2\right)+40=-t_1t_2-5\left(t_1+t_2\right)-25\)
\(\Leftrightarrow t_1t_2+9\left(t_1+t_2\right)+65=0\)
\(\Leftrightarrow-m-72+65=0\Rightarrow m=-7\) (thỏa mãn)
Giả sử tất cả các pt dưới đây đều có nghiệm
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)
Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)
\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)
Giả sử (2) có 2 nghiệm \(t_1;t_2\)
Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)
Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)
\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)
\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)
\(\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)-1=0\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)-1=0\)
Đặt \(x^2+8x+7=t\) (1)
\(t\left(t+8\right)-1=0\)
\(\Leftrightarrow t^2+8t-1=0\)
Do \(ac< 0\) nên pt luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}t_1+t_2=8\\t_1t_2=-1\end{matrix}\right.\)
- Với nghiệm \(t_1\) thay vào (1) ta có:
\(x^2+8x+7-t_1=0\)
Theo Viet, pt này có 2 nghiệm thỏa: \(x_1x_2=7-t_1\)
Với nghiệm \(t_2\) ta có: \(x^2+8x+7-t_2=0\)
Pt này có 2 nghiệm thỏa Viet: \(x_3x_4=7-t_2\)
Do đó: \(x_1x_2x_3x_4=\left(7-t_1\right)\left(7-t_2\right)\)
\(=49-7\left(t_1+t_2\right)+t_1t_2=49-7.8-1=-8\)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
PT
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)
PT(1)
\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)
Ta co:
\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)
\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)
PT(2)
\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)
Ta lai co:
\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)
De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet
Suy ra PT(2) co 2 nghiem phan biet khi
\(5-\sqrt{m+16}>0\)
\(\Leftrightarrow m< 9\)
\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)
Ta lai co:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)
Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
\(\Leftrightarrow-\frac{8}{m+15}=-1\)
\(\Leftrightarrow m=-7\)
Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7
Ta có : \(\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)
=> \(\left(x^2-7x+3x-21\right)\left(x^2-6x+2x-12\right)=m\)
=> \(\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)
- Đặt \(x^2-4x=a\) ta được phương trình :
\(\left(a-21\right)\left(a-12\right)=m\)
=> \(a^2-21a-12a+252-m=0\)
=> \(a^2-33a+252-m=0\)
=> \(\Delta=b^2-4ac=\left(-33\right)^2-4\left(252-m\right)=81+4m\)
Lại có : \(x^2-4x=a\)
=> \(x^2-4x-a=0\) ( I )
- Để phương trình ( I ) có 4 nghiệm phân biệt
<=> Phương trình ( II ) có hai nghiệm phân biệt
<=> \(\Delta>0\)
<=> \(m>-\frac{81}{4}\)
Nên phương trình có hai nghiệm phân biệt :
\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{33-\sqrt{81+4m}}{2}\\x_2=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\)
=> Ta được phương trình ( I ) là :
\(\left\{{}\begin{matrix}x^2-4x+\frac{\sqrt{81+4m}-33}{2}=0\\x^2-4x-\frac{\sqrt{81+4m}+33}{2}=0\end{matrix}\right.\)
- Theo vi ét : \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\frac{33-\sqrt{81+4m}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_3+x_4=4\\x_3x_4=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\end{matrix}\right.\)
- Để \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)
<=> \(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)
<=> \(\frac{4}{\frac{33-\sqrt{81+4m}}{2}}+\frac{4}{\frac{33+\sqrt{81+4m}}{2}}=4\)
<=> \(\frac{1}{\frac{33-\sqrt{81+4m}}{2}}+\frac{1}{\frac{33+\sqrt{81+4m}}{2}}=1\)
<=> \(\frac{2}{33-\sqrt{81+4m}}+\frac{2}{33+\sqrt{81+4m}}=1\)
<=> \(\frac{2\left(33-\sqrt{81+4m}\right)+2\left(33+\sqrt{81+4m}\right)}{\left(33-\sqrt{81+4m}\right)\left(33+\sqrt{81+4m}\right)}=1\)
<=> \(66-2\sqrt{81+4m}+66+2\sqrt{81+4m}=1089-81-4m\)
<=> \(66+66=1089-81-4m\)
<=> \(m=219\)