K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Để phươmg trình đã cho có 2 nghiệm phân biệt nên pt (1) có hai nghiêm dương phân biệt

Chọn B

13 tháng 10 2019

12 tháng 11 2017

AH
Akai Haruma
Giáo viên
1 tháng 2

Lời giải:

Đặt $2^x=t$ thì pt trở thành:

$t^2-2mt+2m=0(*)$

Ta cần tìm $m$ để pt $(*)$ có hai nghiệm $t>0$ phân biệt thỏa mãn $t_1t_2=4$

$(*)$ có 2 nghiệm thì:

$\Delta'=m^2-2m>0\Leftrightarrow m(m-2)>0\Leftrightarrow m>2$ hoặc $m<0$ (1)

Áp dụng định lý Viet, để $(*)$ có 2 nghiệm dương thỏa mãn tích 2 nghiệm bằng 4 thì:

\(\left\{\begin{matrix} S=t_1+t_2>0\\ P=t_1t_2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2m>0\\ 2m=4\end{matrix}\right.\Leftrightarrow m=2\) (2)

Từ $(1); (2)\Rightarrow$ không có giá trị nào của $m$ thỏa mãn

 

 

18 tháng 12 2016

ĐK: x > 0

\(0< x< 1\Leftrightarrow\log_2x< 0\)

Đặt \(t=\log_2x\), pt đã cho trở thành \(t^2-2mt+m+2=0\) (1)

YCBT ↔ pt (1) có hai nghiệm âm phân biệt

\(\Leftrightarrow\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+3m+2>0\\2m< 0\\m+2>0\end{cases}\) \(\Leftrightarrow-1< m< 0\)

 

10 tháng 5 2017

19 tháng 9 2019

Chọn B.

NV
10 tháng 3 2023

\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)

- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm

- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)

Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)

\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên