\(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

pt sai 

8 tháng 7 2021

Mình xin lỗi mình vừa sửa lại phương trình rồi ạ bạn giúp mình giải với. Mình cảm ơn!

 

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

8 tháng 3 2017

\(x^2m-2\left(m-1\right)x+m+1=0\)

\(\Delta=b^2-4ac\)

\(\Rightarrow\Delta=4m+4\)

Để phương trình có 2 nghiệm phân biệt 

\(\Rightarrow\Delta>0\Leftrightarrow m>-1\)

Theo định lý Viet 

\(\Rightarrow\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\) 

 \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1.x_2=\frac{m+1}{m}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left[\frac{2\left(m-1\right)}{m}\right]^2\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x_1^2+x_2^2+2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}\left(1\right)\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)

Xét phương trình ( 1 )

\(pt\left(1\right)\Leftrightarrow16+\frac{2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)

\(\Leftrightarrow\frac{16m+2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)

\(\Leftrightarrow\frac{18m+2}{m}=\frac{4\left(m^2-2m+1\right)}{m^2}\)

\(\Leftrightarrow m^2\left(18m+2\right)=4m\left(m^2-2m+1\right)\)với m khác 0

\(\Leftrightarrow m\left(18m+2\right)=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow18m^2+2m=4m^2-8m+4\)

\(\Leftrightarrow14m^2+10m-4=0\)

\(\Delta=b^2-4ac\)

\(\Rightarrow\Delta=324\)

\(\Rightarrow\hept{\begin{cases}m_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-10+\sqrt{324}}{28}\\m_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-10-\sqrt{324}}{28}\end{cases}}\)

Do  \(m>-1\)

\(\Rightarrow m=\frac{-10+\sqrt{324}}{28}\)

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Để pt có hai nghiệm phân biệt thì \(\Delta'=1+2m>0\Leftrightarrow m> \frac{-1}{2}\)

a)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt:

\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-2m\end{matrix}\right.\)

Khi đó: \((x_1^2+1)(x_2^2+1)=5\)

\(\Leftrightarrow (x_1x_2)^2+x_1^2+x_2^2=4\)

\(\Leftrightarrow (x_1x_2)^2+(x_1+x_2)^2-2x_1x_2=4\)

\(\Leftrightarrow 4m^2+4+4m=4\)

\(\Leftrightarrow m(m+1)=0\Rightarrow m=0\) do \(m> \frac{-1}{2}\)

b)

Ta có:

\(u=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{(x_1+1)(x_2+1)}\)

\(=\frac{x_1+x_2+2}{x_1x_2+(x_1+x_2)+1}=\frac{2+2}{-2m+2+1}=\frac{4}{3-2m}\)

\(v=\frac{1}{x_1+1}.\frac{1}{x_2+1}=\frac{1}{(x_1+1)(x_2+1)}=\frac{1}{x_1+x_2+x_1x_2+1}=\frac{1}{2-2m+1}=\frac{1}{3-2m}\)

Do đó pt nhận \(\frac{1}{x_1+1}; \frac{1}{x_2+1}\) làm nghiệm theo định lý Viete đảo là:

\(X^2-\frac{4}{3-2m}X+\frac{1}{3-2m}=0\)

\(\Leftrightarrow (3-2m)X^2-4X+1=0\)

17 tháng 3 2018

f(x) =x^2 -2x -2m

a) f(x) có hai nghiệm pb <=> 1 +2m > 0 => m>-1/2

P=\(\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1\)

\(P=\left(x_1x_2-1\right)^2+\left(x_1+x_2\right)^2=\left(2m+1\right)^2+4\)

\(P=5\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}2m+1=-1;m=-1\left(l\right)\\2m+1=1;m=0\left(n\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}m\ge\dfrac{1}{2}\\1+2-2m\ne0\end{matrix}\right.\) <=> \(m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\)

\(\left\{{}\begin{matrix}\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}=\dfrac{4}{3-2m}\\\dfrac{1}{x_1+1}.\dfrac{1}{x_2+1}=\dfrac{1}{3-2m}\end{matrix}\right.\)

phương trình cần tìm

\(g\left(x\right)=x^2-\dfrac{4}{3-2m}+\dfrac{1}{3-2m}\) \(\Leftrightarrow\left\{{}\begin{matrix}m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\\\left(2m-3\right)x^2+4x-1=0\end{matrix}\right.\)

19 tháng 6 2020

Ta có : \(\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)

=> \(\left(x^2-7x+3x-21\right)\left(x^2-6x+2x-12\right)=m\)

=> \(\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)

- Đặt \(x^2-4x=a\) ta được phương trình :

\(\left(a-21\right)\left(a-12\right)=m\)

=> \(a^2-21a-12a+252-m=0\)

=> \(a^2-33a+252-m=0\)

=> \(\Delta=b^2-4ac=\left(-33\right)^2-4\left(252-m\right)=81+4m\)

Lại có : \(x^2-4x=a\)

=> \(x^2-4x-a=0\) ( I )

- Để phương trình ( I ) có 4 nghiệm phân biệt

<=> Phương trình ( II ) có hai nghiệm phân biệt

<=> \(\Delta>0\)

<=> \(m>-\frac{81}{4}\)

Nên phương trình có hai nghiệm phân biệt :

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{33-\sqrt{81+4m}}{2}\\x_2=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\)

=> Ta được phương trình ( I ) là :

\(\left\{{}\begin{matrix}x^2-4x+\frac{\sqrt{81+4m}-33}{2}=0\\x^2-4x-\frac{\sqrt{81+4m}+33}{2}=0\end{matrix}\right.\)

- Theo vi ét : \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\frac{33-\sqrt{81+4m}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_3+x_4=4\\x_3x_4=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\end{matrix}\right.\)

- Để \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

<=> \(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)

<=> \(\frac{4}{\frac{33-\sqrt{81+4m}}{2}}+\frac{4}{\frac{33+\sqrt{81+4m}}{2}}=4\)

<=> \(\frac{1}{\frac{33-\sqrt{81+4m}}{2}}+\frac{1}{\frac{33+\sqrt{81+4m}}{2}}=1\)

<=> \(\frac{2}{33-\sqrt{81+4m}}+\frac{2}{33+\sqrt{81+4m}}=1\)

<=> \(\frac{2\left(33-\sqrt{81+4m}\right)+2\left(33+\sqrt{81+4m}\right)}{\left(33-\sqrt{81+4m}\right)\left(33+\sqrt{81+4m}\right)}=1\)

<=> \(66-2\sqrt{81+4m}+66+2\sqrt{81+4m}=1089-81-4m\)

<=> \(66+66=1089-81-4m\)

<=> \(m=219\)

14 tháng 3 2017

\(x^2-2\left(m-1\right)x+m^2+4=0\)

\(\Delta=b^2-4ac\)

\(\Delta=-8m-12\)

Để phương trình có 2 nghiệm phân biệt

\(\Rightarrow\Delta>0\Leftrightarrow m< -\dfrac{3}{2}\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+x_2\right)^2=4\left(m-1\right)^2\\x_1x_2=m^2+4\end{matrix}\right.\)

Theo yêu cầu đề bài \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=3\)

\(\Leftrightarrow\dfrac{x^2_1+x^2_2}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{4\left(m-1\right)^2-2\left(m^2+4\right)}{m^2+4}=3\)

\(\Leftrightarrow\dfrac{4\left(m^2-2m+1\right)-2m^2-8}{m^2+4}=3\)

\(\Leftrightarrow\dfrac{2m^2-8m-4}{m^2+4}=3\)

\(\Leftrightarrow2m^2-8m-4=3m^2+12\)

\(\Leftrightarrow m^2+8m+16=0\)

\(\Delta=b^2-4ac\)

\(\Delta=0\)

\(\Rightarrow m=-\dfrac{b}{2a}=-4\)