K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2015

Câu 1 : nhân 2 vào pt(2) trừ vế cho vế , câu 2 tính viet sau đó lập bảng biến thiên 

24 tháng 5 2016

Cho phương trình: X2 - (2m4+1)x + m2 + m - 1 = 0

a. Giải phương trình khi m=1 khi đó lập một phương trình nhận t1 = x+ xvà t= xxlàm nghiệm.

b. Chứng minh phương trình có nghiệm với mọi m.

c. Tìm m sao cho:

    A=(2x1 - x2)(2x2 - x1) đạt GTNN, thín GTNN đó (giá trị nhỏ nhất). 

chịu @_@

24 tháng 5 2016

a) thay m=1 vào lập denta giải pt ra đc x1=(3+căn5)/2;x2=(3-căn5)/2

t1=x1+x2=(3+căn5)/2+(3-căn5)/2=3

t2=x1*x2=(3+căn5)/2*(3-căn5)/2=1

=>t1+t2=4;t1*t2=3

=>t1;t2 là nghiệm của pt

T^2-4T+3=0

b) đenta=(2m+1)^2-4(m^2+m-1)=5>0

=>pt luôn luôn có nghiệm với mọi m

c) A=(2x1-x2)(2x2-x1)=5x1x2-2x1^2-2x2^2=5x1x2-2(x1^2+x2^2)=5x1x2-2(x1+x2)^2+4x1x2=9x1x2-2(x1+x2)^2

=9(m^2+m-1)-2(2m+1)^2=9m^2+9m-9-4m-2=9m^2+5m-11>=-421/36 khi x=-5/18

28 tháng 4 2020

Hướng dẫn:

\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)

TH1:  m - 2 = 0 <=> m = 2 

khi đó phương trình trở thành: \(-3x^2+4=0\)

<=> \(x=\pm\frac{2}{\sqrt{3}}\)

TH2: m khác 2

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)

có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)

+) Phương trình (1)  vô nghiệm <=> phương trình (2) vô nghiệm 

<=> \(\Delta\)<0  ( tự giải ra) 

+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không ) 

+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương

Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)

<=> m = - 2 

Thay vào phương trình (2) : \(-4t^2-3.t=0\)

<=> \(t\left(4t+3\right)=0\)

<=> t = 0 

=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm 

+) Phương trình (1) có 2 nghiệm  <=>phuowng trình (2) có 2 nghiệm trái dấu 

<=> m + 2 < 0 <=> m < - 2 

Kết hợp với TH1 nữa nhé!

+)  Phương trình (1) có 4 nghiệm 

<=> phương trình 2 có 2 nghiệm dương 

<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm

24 tháng 5 2016

Phương trình đúng là 

x- 2(m + 1)x + m2 = 0