K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

Hướng dẫn:

\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)

TH1:  m - 2 = 0 <=> m = 2 

khi đó phương trình trở thành: \(-3x^2+4=0\)

<=> \(x=\pm\frac{2}{\sqrt{3}}\)

TH2: m khác 2

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)

có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)

+) Phương trình (1)  vô nghiệm <=> phương trình (2) vô nghiệm 

<=> \(\Delta\)<0  ( tự giải ra) 

+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không ) 

+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương

Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)

<=> m = - 2 

Thay vào phương trình (2) : \(-4t^2-3.t=0\)

<=> \(t\left(4t+3\right)=0\)

<=> t = 0 

=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm 

+) Phương trình (1) có 2 nghiệm  <=>phuowng trình (2) có 2 nghiệm trái dấu 

<=> m + 2 < 0 <=> m < - 2 

Kết hợp với TH1 nữa nhé!

+)  Phương trình (1) có 4 nghiệm 

<=> phương trình 2 có 2 nghiệm dương 

<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

a) Thay m = -4 vào phương trình, ta có:

\(x^2+5x-6=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)

KL: Vậy phương trình có tập nghiệm \(S=\left\{-6;1\right\}\) khi m = -4

b) Xét \(\Delta=5^2-4.1.\left(m-2\right)=25-4m+8=33-4m\)

Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)

Theo định lý Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1.x_2=m-2\end{matrix}\right.\)

Để \(x_1^2+x^2_2-2x_1=25+2x_2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)-25=0\)

<=> \(\left(-5\right)^2-2\left(m-2\right)-2\left(-5\right)-25=0\)

<=> \(25-2m+4+10-25=0\)

<=> 2m = 14

<=> m = 7 (Tm)

Vậy m = 7 để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x^2_2-2x_1=25+2x_2\)