K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Ta viết lại hàm số :

\(y=(m-2)x-3m+4+m^2x\)

\(=x(m^2+m-2)-3m+4\)

Để hàm số trên là hàm số bậc nhất thì:

\(m^2+m-2\neq 0\Leftrightarrow (m-1)(m+2)\neq 0\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ m\neq -2\end{matrix}\right.\)

------------------------------

Bạn cứ nhớ hàm số $y=ax+b$ là hàm bậc nhất khi $a\neq 0$

31 tháng 1 2020

Bài làm :

\(D=\left|\frac{m-3;4}{-m;5}\right|=5\left(m-3\right)+4m\)

\(D_x=\left|\frac{3m;4}{4m-1;5}\right|=15m-4\left(4m-1\right)\)

\(D_y=\left|\frac{m-3;3m}{-m;4m-1}\right|=\left(m-3\right)\left(4m-1\right)+3m^2\)

a) Hệ có 1 nghiệm duy nhất (x;y)\(\Leftrightarrow D\ne0\)

<=> \(5m-15+4m\ne0\Leftrightarrow m\ne\frac{15}{9}\)

Nghiệm (x;y) là : \(\left\{{}\begin{matrix}x=\frac{15m-16m+4}{5m-15+4m}=\frac{-m+4}{9m-15}\\y=\frac{4m^2-m-12m+3+3m^2}{5m-15+4m}=\frac{7m^2-13m+3}{9m+15}\end{matrix}\right.\)

b) Hệ vô nghiệm <=> D=0 <=> \(m=\frac{15}{9}\)

Ta có : \(\left\{{}\begin{matrix}D=0\\D_x=\frac{7}{3}\\D_y=\frac{7}{9}\end{matrix}\right.\)

Vậy m=15/9 thì hệ vô nghiệm.

1 tháng 8 2019

Ôn tập Hàm số bậc nhất

1 tháng 8 2019

1) Bạn tự vẽ :v

2) Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(-\frac{1}{3}x+1\Leftrightarrow x+5\Leftrightarrow\frac{4}{3}x=-4\Leftrightarrow x=-3\Rightarrow y=x=5=-3+5=2\)

Vậy giao điểm của (d1) và (d2) có tọa độ là (-3;2)

3) Giả sử điểm A (2; -3m+1) thuộc (d1), ta có:

\(-3m+1=\frac{-1}{3}\cdot2+1\\ \Leftrightarrow-3m+1=-\frac{2}{3}+1\\ \Leftrightarrow-3m=-\frac{2}{3}\\ \Leftrightarrow m=\frac{2}{9}\)

Vậy với m = 2/9 thì điểm A thuộc (d1)