Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình x2-(2m+1)x+m2=0
Xét \(\Delta=\left(2m-1\right)^2-4m^2=-4m+1>0\)
\(\Rightarrow m< \frac{1}{4}\)
a, Khòng mất tính tổn quát giả sử \(0< x_1< x_2\)
Để pt có 2 nghiệm dương phân biệt thì : \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\2m+1>0\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}\)
b, Ta có\(x_1=\frac{2m+1-\sqrt{1-4m}}{2};x_2=\frac{2m+1+\sqrt{1-4m}}{2}\)
\(\Rightarrow\left(x_1-m\right)^2+x_2=3m\)
\(\Leftrightarrow\left(\frac{1-\sqrt{1-4m}}{2}\right)^2+\frac{2m+1+\sqrt{1-4m}}{2}=3m\)
Giải ra tìm được m :))))
\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)
Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1
Theo hệ thức vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)
Vì |x1+x2|=2
\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)
Vậy m=3 thì thỏa mãn
Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)
Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)
Thay (1) vào (2) ta được pt:
\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)
\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)
\(\Rightarrow m^2-2m-3=0\)
\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)
Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)
Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
Ta có: \(\Delta'=\left(m-1\right)^2-\left(-2m+5\right)=m^2-2m+1+2m-5=m^2-4\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m^2-4>0\) => m < -2 hoặc m > 2
Theo Vi-ét: \(\hept{\begin{cases}x_1+x_2=-2m+2\\x_1x_2=-2m+5\end{cases}}\)
Có: x13 + x23 = 0 => (x1 + x2)(x12 + x22 - x1x2) = 0 => (x1 + x2) [ (x1 + x2)2 - 2x1x2 - x1x2 ] = 0
\(\Rightarrow\orbr{\begin{cases}x_1+x_2=0\left(1\right)\\\left(x_1+x_2\right)^2-3x_1x_2=0\left(2\right)\end{cases}}\)
Từ (1) => -2m + 2 = 0 => -2m = -2 => m = 1 (loại)
Từ (2) => (-2m + 2)2 - 3(-2m + 5) = 0 => 4m2 - 8m + 4 + 6m - 15 = 0 => 4m2 - 2m - 11 = 0 \(\Rightarrow\orbr{\begin{cases}x=\frac{1+3\sqrt{5}}{4}\left(l\right)\\x=\frac{1-3\sqrt{5}}{4}\left(l\right)\end{cases}}\)
Vậy vô nghiệm
Xét \(\Delta'=\left(m-1\right)^2+2m-5=m^2-2m+1+2m-5=m^2-4\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m^2>4\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Áp dụng hệ thức Vi-et, ta được : \(\hept{\begin{cases}x_1+x_2=-2m+2\\x_1.x_2=-2m+5\end{cases}}\)
Ta có : \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(\Rightarrow\left(2-2m\right)^3-3\left(5-2m\right)\left(2-2m\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m^2-2m-11\right)=0\)
\(\Rightarrow m=1\)(loại) hoặc \(m=\frac{1-3\sqrt{5}}{4}\)(loại) hoặc \(m=\frac{1+3\sqrt{5}}{4}\)(loại)
Vậy không giá trị nào của m thoả mãn đề bài.
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)
\(< =>4m^2-4m+1-4m^2+1>0\)
\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)
b , bạn dùng vi ét là ra
Để phương trình có 2 nghiệm thì: \(\Delta^'\ge0\)
Hay:\(2^2-\left(2m-5\right)\ge0\)
\(\Leftrightarrow4-2m+5\ge0\)
\(\Leftrightarrow-2m\ge-9\)
\(\Leftrightarrow m\le\frac{9}{2}\)
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=2m-5\end{cases}}\)
Ta có: \(x_1^2+x_2^2-x_1x_2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=20\)
\(\Leftrightarrow\left(-4\right)^2-3\left(2m-5\right)=20\)
\(\Leftrightarrow16-6m+15=20\)
\(\Leftrightarrow-6m=-11\)
\(\Leftrightarrow m=\frac{11}{6}\)(tm)
=.= hk tốt!!
Ta có \(\Delta=\left(2m+1\right)^2-4\left(3m-1\right)=4m^2+4m+1-12m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+1=\left(2m-2\right)^2+1\)
Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta>0\)\(\Leftrightarrow\left(2m-2\right)^2+1>0\forall m\)
Nên phương trình có 2 nghiệm \(x_1;x_2\)với mội m
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=-\left(2m+1\right)\\x_1.x_2=3m-1\end{cases}}\)
\(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\Leftrightarrow\left(2m+1\right)^2-2\left(3m-1\right)-5=0\)
\(\Leftrightarrow4m^2+4m+1-6m+2-5=0\Leftrightarrow4m^2-2m-2=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-\frac{1}{2}\end{cases}\left(tm\right)}\)
Vậy với m=1 hoặc m=-1/2 thỏa mãn yêu cầu bài toán