Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{2}{-4}=-\dfrac{1}{2}\)
=>\(m\ne-1\)
\(\left\{{}\begin{matrix}mx+2y=1\\2x-4y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+4y=2\\2x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m+2\right)=5\\2x-4y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5}{2m+2}\\4y=2x-3=\dfrac{10}{2m+2}-3=\dfrac{10-6m-6}{2m+2}=\dfrac{-6m+4}{2m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5}{2m+2}\\y=\dfrac{-6m+4}{8m+8}=\dfrac{-3m+2}{4m+4}\end{matrix}\right.\)
x-3y=7/2
=>\(\dfrac{5}{2m+2}-\dfrac{3\cdot\left(-3m+2\right)}{4m+4}=\dfrac{7}{2}\)
=>\(\dfrac{10+3\left(3m-2\right)}{4m+4}=\dfrac{7}{2}\)
=>\(\dfrac{10+9m-6}{4m+4}=\dfrac{7}{2}\)
=>\(\dfrac{9m+4}{4m+4}=\dfrac{7}{2}\)
=>7(4m+4)=2(9m+4)
=>28m+28=18m+8
=>10m=-20
=>m=-2(nhận)

Ta có: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\) <=> \(\hept{\begin{cases}2x-2my=4\\m^2x+2my=m\end{cases}}\)
<=> \(2x+m^2x=4+m\)
<=> \(x\left(m^2+2\right)=4+m\)
<=> \(x=\frac{4+m}{m^2+2}\) => \(y=\frac{1-mx}{2}=\frac{1-m\cdot\frac{4+m}{m^2+2}}{2}=\frac{\frac{m^2+2-4m-m^2}{m^2+2}}{2}\)
=> \(y=\frac{2-4m}{2\left(m^2+2\right)}=\frac{1-2m}{m^2+2}\)
Theo bài ra, ta có: \(3x+2y-1\ge0\)
<=> \(3\cdot\frac{4+m}{m^2+2}+2\cdot\frac{1-2m}{m^2+2}-1\ge0\)
<=> \(\frac{3\left(4+m\right)+2\left(1-2m\right)-m^2-2}{m^2+2}\ge0\)
<=> \(12+3m+2-4m-m^2-2\ge0\) (vì \(m^2+2>0\))
<=> \(-m^2-m+12\ge0\)
<=> \(m^2+4m-3m-12\le0\)
<=> \(\left(m+4\right)\left(m-3\right)\le0\)
<=> \(\hept{\begin{cases}m+4\ge0\\m-3\le0\end{cases}}\) hoặc \(\hept{\begin{cases}m+4\le0\\m-3\ge0\end{cases}}\)
<=> \(\hept{\begin{cases}m\ge-4\\m\le3\end{cases}}\) hoặc \(\hept{\begin{cases}m\le-4\\m\ge3\end{cases}}\)
<=> \(-4\le m\le3\)

Vì \(\left(m-1\right)x+y=2\)\(\Rightarrow y=2-\left(m-1\right)x\) ( 1 )
Thay vào PT dưới có : \(mx+2-\left(m-1\right)x=m+1\)
\(\Rightarrow x+1=m\)( pt này luôn có nghiệm duy nhất )
\(\Rightarrow x=m-1\), thay vào ( 1 ) ta có :
\(y=2-\left(m-1\right)^2\)
Ta có : \(x+y=-4\) \(\Leftrightarrow m-1+2-\left(m-1\right)^2=-4\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)-6=0\)
\(\left[\left(m-1\right)^2-3\left(m-1\right)\right]+\left[2.\left(m-1\right)-6\right]=0\)
\(\Rightarrow\left[\left(m-1\right)-3\right].\left[\left(m-1\right)+2\right]=0\)
\(\Rightarrow\hept{\begin{cases}m-1=3\\m-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}m=4\\m=-1\end{cases}}\)

b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)
=>m<>-1
c: Để hệ có nghiệm duy nhất thì m<>-1
\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)
=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)
x-3y=5
=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)
=>3-3(2m-1)=5(m+1)
=>3-6m+3=5m+5
=>-6m+6=5m+5
=>-11m=-1
=>\(m=\frac{1}{11}\) (nhận)
d: xy<0
=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)
=>3(2m-1)<0
=>2m-1<0
=>\(m<\frac12\)
Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)
e: x+2y>4
=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)
=>3+2(2m-1)>4(m+1)
=>3+4m-2>4m+4
=>1>4(sai)
=>m∈∅
f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1
=>3⋮m+1 và 2m+2-3⋮m+1
=>3⋮m+1 và -3⋮m+1
=>3⋮m+1
=>m+1∈{1;-1;3;-3}
=>m∈{0;-2;2;-4}