Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Từ (2) suy ra \(\begin{cases}2-y\ge0\\x=\frac{y^2-4y+4}{y}\end{cases}\)
Lúc đó (1) có \(\frac{y^2-4y+4}{y}-y+m=0\Leftrightarrow m=\frac{4y-4}{y}\Leftrightarrow g\left(m\right)=f\left(y\right)\)
Xét hàm số \(f\left(y\right)=\frac{4y-4}{y}\)
- Miền xác định \(D=\left(-\infty;2\right)\)/\(\left\{0\right\}\)
- Đạo hàm \(f'\left(y\right)=\frac{4}{y^2}>0\) Hàm số đồng biến trên D
- Giới hạn
\(\lim\limits_{y\rightarrow-\infty}f\left(y\right)=4\)
\(\lim\limits_{y\rightarrow0^+}f\left(y\right)=-\infty\)
\(\lim\limits_{y\rightarrow0^-}f\left(y\right)=+\infty\)
Bảng biến thiên
x | -\(\infty\) 0 2 |
y' | + // + |
y | 4 +\(\infty\) // -\(\infty\) 2 |
Vậy để hệ có nghiệm : \(m\in\left(-\infty;2\right)\cup\left(4,+\infty\right)\)
Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a)
\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)
Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\) (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó
khác nhau và cùng thỏa mãn ( b) , hay là :
\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)
\(\left(\Rightarrow m\ne1\right)\)
\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)
\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)
Vậy \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm