\(\begin{cases}x-1<3-x\\mx+1>x\end{cases}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

Nhận xét rằng khi thay x=0 vào hệ bất phương trình, ta được :

\(\begin{cases}0-1<3-0\\m.0+1>0\end{cases}\)  \(\Leftrightarrow\begin{cases}-1<3\\1>0\end{cases}\)

Hệ này luôn đúng với mọi \(m\in R\)

Vậy với mọi \(m\in R\) , hệ bất phương trình đã cho luôn có ít nhất một nghiệm (x=0).

Do đó với \(m\in R\)  hệ bất phương trình đã cho luôn có nghiệm

27 tháng 2 2016

\(\begin{cases}x^2+7x-8\le0\\a^2x+1>3+\left(3a-2\right)x\end{cases}\) (1)

\(\Leftrightarrow\) \(\begin{cases}x^2+7x-8\le0\\\left(a^2-3a+2\right)x>2\end{cases}\)

ta đặt 

\(x^2+7x-8\le0\)  (a)

\(\left(a^2-3a+2\right)x>2\) (b)

(1) Vô nghiệm khi và chỉ khi T(a)\(\cap\)T(b) = \(\varnothing\)

Dễ thấy T(a) = \(\left[-8;1\right]\). Đặt m:=\(a^2-3a+2\), xét các trường hợp sau : 

- Nếu a=1 hoặc a=2 thì 

\(\left(a^2-3a+2\right)x>2\) \(\Leftrightarrow\) 0.x > 2 \(\Rightarrow\) T ( b) = \(\varnothing\) nên (1) vô nghiệm

- Nếu \(a\in\left(-\infty;1\right)\cup\left(2;+\infty\right):=\)(*) thì m >0 nên T(b) có nghiệm \(x>\frac{2}{m}\) Ta có :

T(a)\(\cap\) T(b) = \(\varnothing\)   \(\Leftrightarrow\)  \(\frac{2}{m}\ge1\)

                             \(\Leftrightarrow\)  \(2\ge m=a^2-3a+2\) ( do m>0 trong (*)

                            \(\Leftrightarrow\) \(a^2-3a\le0\)  \(\Leftrightarrow\)  \(0\le a\le3\)

Kết hợp với điều kiện \(a\in\)(*) được \(0\le a<1\) hoặc 2<a\(\le\)3

- Nếu \(a\in\)(1;2) thì m<0 nên T(b) có nghiệm \(x<\frac{2}{m}\) Ta có T(a)\(\cap\) T(b) = \(\varnothing\)   \(\Leftrightarrow\)  \(\frac{2}{m}\le-8\)

\(\Leftrightarrow\) \(2\ge-8m=-8\left(a^2-3a+2\right)\) (do m<0 trong (1;2) 

\(\Leftrightarrow\) \(4a^2-12a+9\ge0\)  \(\Leftrightarrow\) \(\left(2a-3\right)^2\ge0\) luôn đúng

Vậy với  \(a\in\)(1;2) thì (1) vô nghiệm. Tóm lại ta được 0\(\le a\le\)3 là các giá trị cần tìm

 

 

4 tháng 3 2019

Lười làm lắm cứ xét từng khoản là được

Đầu tiên giải bất thứ nhất

Ở bất thứ 2 xét 2 trường hợp

- TH 1: \(m\le0\)

- TH2: \(m>0\)

   + \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)

   +\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)

26 tháng 2 2016

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) (1)

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}mx^2=x^2-3x-1\\x^2-3x-1-2x+5<0\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}f\left(x\right):=\left(m-1\right)x^2+3x+1=0\\x^2-5x+4<0\end{cases}\)

Mà  \(x^2-5x+4<0\)  (3) có tập nghiệm T=(1;4)

nên hệ (1) có nghiệm duy nhất khi và chỉ khi phương trình \(f\left(x\right):=\left(m-1\right)x^2+3x+1=0\) (2) có đúng một nghiệm \(x\in T\)

- Nếu m=1 thì (2) có nghiệm duy nhất \(x=-\frac{1}{3}\) không thuộc T

- Nếu \(m\ne1\) thì (2) là phương trình bậc 2 với \(\Delta=13-4m\)

              + Nếu \(\Delta=0\)  hay \(m=\frac{13}{4}\)  thì (2) có nghiệm \(x=-\frac{2}{3}\) không thuộc T

              +  Nếu \(\Delta>0\)  hay \(m<\frac{13}{4}\)  thì (2) có nghiệm duy nhất thuộc T khi và chỉ khi xảy ra một trong hai trường hợp sau :

                                 \(x_1\)  \(\le\)1 < \(x_2\)  < 4  (a)

                             hoặc

                                1< \(x_1\)  <4  \(\le\)   \(x_2\)    (b)

                           # Nếu \(x_1\) = 1 \(\Leftrightarrow\) m-1+3+1=0 \(\Leftrightarrow\) m=-3 thì \(x_2=-\frac{1}{4}\) không thỏa mãn(a)

                            # Nễu \(x_2=4\) hay \(m=\frac{3}{16}\) thì \(x_1=-\frac{4}{13}\) không thỏa mãn (b)

Vậy ta phải có 

                                     \(x_1\)  <1 < \(x_2\)  < 4 

                               hoặc 

                                     1< \(x_1\)  <4  <   \(x_2\)  

\(\Leftrightarrow\) \(f\left(1\right)f\left(4\right)<0\)

\(\Leftrightarrow\) (m+3)(16m-3) <0

\(\Leftrightarrow\) -3<m<\(\frac{3}{16}\)  Thỏa mãn điều kiện \(\Delta>0\)

Tóm lại -3<m<\(\frac{3}{16}\)  là các giá trị cần tìm