\(\left\{{}\begin{matrix}\left(x-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

NV
30 tháng 8 2020

Thay \(y=0\Rightarrow f\left(x\right)=f\left(x\right)+f\left(0\right)\Rightarrow f\left(0\right)=0\)

Đặt \(g\left(x\right)=f\left(x\right)-x^2\Rightarrow g\left(0\right)=0\)

\(g\left(x+y\right)=f\left(x+y\right)-\left(x+y\right)^2=f\left(x\right)+f\left(y\right)+2xy-\left(x+y\right)^2\)

\(=\left[f\left(x\right)-x^2\right]+\left[f\left(y\right)-y^2\right]=g\left(x\right)+g\left(y\right)\)

Vậy quy về tìm hàm \(g\) thỏa \(g\left(x+y\right)=g\left(x\right)+g\left(y\right)\)

\(g\left(x+\Delta x\right)=g\left(x\right)+g\left(\Delta x\right)\Rightarrow g\left(x+\Delta x\right)-g\left(x\right)=g\left(\Delta x\right)-g\left(0\right)\)

\(\Rightarrow\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)

Lấy giới hạn 2 vế: \(\lim\limits_{\Delta x\rightarrow0}\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)

\(\Leftrightarrow g'\left(x\right)=g'\left(0\right)=const\) (theo định nghĩa về đạo hàm)

\(\Rightarrow g\left(x\right)=c.x\) với c là hằng số

\(\Rightarrow f\left(x\right)=x^2+cx\)

Thay vào pt dưới: \(\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x}\right)=\frac{x^2+cx}{x^4}=\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x^3}\right)\)

\(\Leftrightarrow c\left(\frac{1}{x}\right)=c\left(\frac{1}{x^3}\right)\)

Điều này thỏa mãn với mọi x khi và chỉ khi \(c=0\)

\(\Rightarrow f\left(x\right)=x^2\Rightarrow f\left(\sqrt{2019}\right)=2019\)

31 tháng 8 2020

Nguyễn Việt Lâm a thi VMO k thế :D

NV
7 tháng 3 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1+y^2=1\\\left(x-1\right)^3+y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2=1\\\left(x-1\right)^3+y^3=1\end{matrix}\right.\)

Do \(\left(x-1\right)^2+y^2=1\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|\le1\\\left|y\right|\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^3\le\left(x-1\right)^2\\y^3\le y^2\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)^3+y^3\le\left(x-1\right)^2+y^2=1\)

Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\y=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(2;0\right)\)

29 tháng 2 2020

Xem lại đề đi bạn ._.

29 tháng 2 2020

pt 2 tất cả là bậc 3

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
NV
30 tháng 7 2021

a.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)

\(\Rightarrow3x+2=2x\left(x+y\right)+y\)

\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)

\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)

Thế vào pt đầu ...

Câu b chắc chắn đề sai