Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
+ Với , hàm số trở thành đồng biến trên nên hàm số cũng đồng biến trên khoảng , do đó thỏa mãn.
+ Với , hàm số đã cho làm hàm số trùng phương với hệ số .
,
.
Để hàm số đồng biến trên khoảng thì phương trình vô nghiệm hoặc có hai nghiệm phân biệt , sao cho
.
Vậy điều kiện để hàm số đồng biến trên là .
Vì nguyên, nên , có giá trị.
- Với \(m=0\) thỏa mãn
- Với \(-2\left(4m-1\right)\ge0\Rightarrow m\le\dfrac{1}{4}\) hàm đồng biến trên \(\left(0;+\infty\right)\) thỏa mãn
- Xét với \(m>\dfrac{1}{4}\)
\(y'=4m^2x^3-4x\left(4m-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\sqrt{4m-1}}{m}\\x=-\dfrac{\sqrt{4m-1}}{m}\end{matrix}\right.\)
Do \(a=m^2>0\) nên hàm đồng biến trên các khoảng \(\left(-\dfrac{\sqrt{4m-1}}{m};0\right)\) và \(\left(\dfrac{\sqrt{4m-1}}{m};+\infty\right)\)
\(\Rightarrow\) Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(\dfrac{\sqrt{4m-1}}{m}\ge1\Rightarrow4m-1\ge m^2\)
\(\Leftrightarrow m^2-4m+1\le0\Rightarrow2-\sqrt{3}\le m\le2+\sqrt{3}\)
Vậy \(\left[{}\begin{matrix}m\le\dfrac{1}{4}\\2-\sqrt{3}\le m\le2+\sqrt{3}\end{matrix}\right.\)
Chọn đáp án C.
Yêu cầu bài toán tương đương với
Vậy m ∈ - 9 , . . . , 0 , 4 , . . . , 9 có tất cả 16 số nguyên thoả mãn.
Đáp án A
TXĐ: D= ℝ
y = m x 3 - x 2 + 2 x + m - 1
⇒ y ' = 3 m x 2 - 2 x + 2
Để y = m x 3 - x 2 + 2 x + m - 1 đồn biến trên khoảng - 2 ; 0 thì
y ' = 3 m x 2 - 2 x + 2 > 0 ∀ x ∈ - 2 ; 0
hay 2 x - 2 3 x 2 < m ∀ x ∈ - 2 ; 0
xét f x = 2 x - 2 3 x 2 có
f ' x = 2 . 3 x 2 - 6 x 2 x - 2 9 x 4 = - 6 x 2 + 12 x 9 x 4 = 0
⇔ x=0 hoặc x=2
Ta có bảng biến thiên
vậy f x = 2 x - 2 3 x 2 < m ∀ x ∈ - 2 ; 0 ⇔ m > - 1 2
Tập xác định: D = R; y′ = x 2 − (1 + 2cosa)x + 2cosa
y′= 0
Vì y’ < 0 ở ngoài khoảng nghiệm nên để hàm số đồng biến với mọi x > 1 thì 2cosa ≤ 1
(vì a ∈ (0; 2 π ).
Chọn B
Phương pháp:
Tính y'.
Tìm m để
Cách giải:
Ta có
Xét phương trình y' = 0 có
Suy ra phương trình y' = 0 luôn có hai nghiệm
Dễ thấy trong khoảng thì hàm số đồng biến.
Bài toán thỏa
Do
Vậy có giá trị của m thỏa mãn bài toán.
Chú ý:
Cách khác: Tìm m để
Theo định lí Viet, ta có
Hàm số đồng biến trên ( 2 ; + ∞ ) ⇔ phương trình y' = 0 có hai nghiệm
Vậy có 1001 số nguyên m thuộc khoảng (-10000;10000)
Lời giải:
Đặt \(x^2=t\). Khi đó: \(y=m^2t^2-2(4m-1)t+1\)
\(\Rightarrow y'=2m^2t-2(4m-1)\)
Hàm số ban đầu đồng biến trên \((1;+\infty)\) khi :
\(2m^2t-2(4m-1)\geq 0(*), \forall t\in (1;+\infty)\)
Với \(m=0\Rightarrow (*)\) luôn đúng (thỏa mãn)
Với \(m\geq 0; (*)\Leftrightarrow t\geq \frac{4m-1}{m^2}\) với mọi \(t\in (1;+\infty)\)
\(\Rightarrow \frac{4m-1}{m^2}\leq \min t\Rightarrow \frac{4m-1}{m^2}\leq 1\)
\(\Rightarrow 4m-1\leq m^2\Rightarrow \left[\begin{matrix} m\leq 2-\sqrt{3}\\ m\geq 2+\sqrt{3}\end{matrix}\right.\)
Vậy \(m\in (-\infty; 2-\sqrt{3}]; m\in [2+\sqrt{3}; +\infty)\)