\(y=\left(m^2-4m+4\right)x-2021\) đồng biến trên `R`.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

\(m^2-4m+4=m^2-2\cdot m\cdot2+2^2=\left(m-2\right)^2>=0\forall m\)

Để hàm số \(y=\left(m^2-4m+4\right)x-2021\) đồng biến trên R thì

\(m^2-4m+4>0\)

=>\(\left(m-2\right)^2>0\)

=>m-2<>0

=>m<>2

4 tháng 8 2016

a  đồng biến khi 5+m>0
b nghịch biến khi \(m< 1\)
c nghịch biến khi \(5-43+m^2< 0\)

5 tháng 8 2016

5 - 4m + m2 < 0

=> m2  - 4m + 4 -4 + 5 <0

=> (m-2)2 + 1< 0 ( vô lý)

vậy không có giá trị nào của m để hàm số đã cho nghịch biến

12 tháng 11 2017

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2

16 tháng 10 2020

m=2. Khi đó hàm số trở thành: f(x)= -4x-3

Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

19 tháng 10 2021

LỚP 4 KO BIẾT

23 tháng 10 2021

Đồng biến vì \(3m^2-m+3\)luôn dương

Lý do: \(3m^2-m+3\)có \(b^2-4ac=1-4.9=-35< 0\)

22 tháng 12 2018

Hàm số \(y=\left(|m-2|-4\right)x^2\) có dạng: \(y=ax^2\)

với \(a=|m-2|-4\)

a,Hàm số đồng biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow a>0\)

 \(a=|m-2|-4>0\Leftrightarrow|m-2|>4\)

\(\Rightarrow m>6\)hoặc \(m< -2\)

b,Hàm số \(y=\left(|m-2|-4\right)x^2\) nghịch biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow|m-2|-4< 0\)

\(|m-2|-4< 0\Leftrightarrow|m-2|< 4\)

\(\Rightarrow-2< m< 6\)

5 tháng 8 2016

Hàm số trên có dạng : \(y=ax+b\left(a\ne0\right)\)

Để hàm số nghịch biến thì \(\sqrt{m}-1< 0\Leftrightarrow m< 1\)

14 tháng 10 2019

để hầm số trên nghịch biến trên R thì:\(\left(\sqrt{m}-1\right)\)<0

\(\Leftrightarrow\sqrt{m}< 1\)

\(\Leftrightarrow m< 1\)

vậy để hàm số trên nghịch biến trên R thì m\(< \)1