Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 - 4m + m2 < 0
=> m2 - 4m + 4 -4 + 5 <0
=> (m-2)2 + 1< 0 ( vô lý)
vậy không có giá trị nào của m để hàm số đã cho nghịch biến
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Hàm số \(y=\left(|m-2|-4\right)x^2\) có dạng: \(y=ax^2\)
với \(a=|m-2|-4\)
\(a=|m-2|-4>0\Leftrightarrow|m-2|>4\)
\(\Rightarrow m>6\)hoặc \(m< -2\)
b,Hàm số \(y=\left(|m-2|-4\right)x^2\) nghịch biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow|m-2|-4< 0\)
\(|m-2|-4< 0\Leftrightarrow|m-2|< 4\)
\(\Rightarrow-2< m< 6\)
Hàm số trên có dạng : \(y=ax+b\left(a\ne0\right)\)
Để hàm số nghịch biến thì \(\sqrt{m}-1< 0\Leftrightarrow m< 1\)
để hầm số trên nghịch biến trên R thì:\(\left(\sqrt{m}-1\right)\)<0
\(\Leftrightarrow\sqrt{m}< 1\)
\(\Leftrightarrow m< 1\)
vậy để hàm số trên nghịch biến trên R thì m\(< \)1
\(m^2-4m+4=m^2-2\cdot m\cdot2+2^2=\left(m-2\right)^2>=0\forall m\)
Để hàm số \(y=\left(m^2-4m+4\right)x-2021\) đồng biến trên R thì
\(m^2-4m+4>0\)
=>\(\left(m-2\right)^2>0\)
=>m-2<>0
=>m<>2