\(y=\dfrac{x-m}{\left(x-m\right)\sqrt{m-1-x}}\) xác định trên 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 11 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne m\\x< m-1\end{matrix}\right.\) \(\Rightarrow x< m-1\)

Hay \(D=\left(-\infty;m-1\right)\)

Hàm xác định trên miền đã cho khi

\((-\infty;-1]\subset D\)  \(\Rightarrow m-1>-1\Rightarrow m>0\)

30 tháng 3 2017

a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3

Tập xác định của y = là:

D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +)\{-1}

Có thể viết cách khác: D = [-3, -1] ∪ (-1, +)

b) Tập xác định

D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}

= [-, 2323 ]∩(-, 1212) = (-, 1212)

c) Tập xác định là:

D = [1, +) ∪ (-,1) = R

13 tháng 9 2018

a) y= \(\sqrt{1+x}\)- \(\sqrt{1-x}\) ( TXĐ: [-1;1])

D= R\[-1;1]

f(-x)=\(\sqrt{1+\left(-x\right)}\)-\(\sqrt{1-\left(-x\right)}\)=\(\sqrt{1-x}\)-\(\sqrt{1+x}\)

=-\(\sqrt{1+x}\)+\(\sqrt{1-x}\) = -(\(\sqrt{1+x}\)-\(\sqrt{1-x}\))=-f(x)

---> hso lẻ

13 tháng 9 2018

b) \(x\)2-\(3x^3\)

D=R

f(-x)= (-x)2-3(-x)3=x2+3x3 khác f(x) và f(-x)

---> hsô không chẵn không lẻ

1: ĐKXĐ: \(\left|x^2-4\right|+\left|x+2\right|< >0\)

\(\Leftrightarrow x\ne-2\)

2: ĐKXĐ: \(\left|x-2\right|-\left|x+1\right|< >0\)

\(\Leftrightarrow\left|x-2\right|< >\left|x+1\right|\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2< >x+1\\x-2< >-x-1\end{matrix}\right.\Leftrightarrow2x< >1\Leftrightarrow x< >\dfrac{1}{2}\)

3: ĐKXĐ: \(\left\{{}\begin{matrix}2x+11>=0\\\left\{{}\begin{matrix}3x-2< >4\\3x-2< >-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{11}{2}\\x\notin\left\{2;-\dfrac{2}{3}\right\}\end{matrix}\right.\)

 

24 tháng 4 2017

a/ \(M=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\left(\sqrt{x}+2\right)\right].\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\sqrt{x}-x\)

b/ Chứng minh

\(\sqrt{x}-x\le\dfrac{1}{4}\)

\(\Leftrightarrow4x-4\sqrt{x}+1\ge0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)^2\ge0\) (đúng)

2 tháng 8 2018

Giải ra dùm mình lun nha. Cảm ơn nhìu

a: ĐKXĐ: x-1>0 và x+2<>0

=>x>1

b: DKXĐ: (x-2)căn x-1<>0

=>x-1>0 và x-2<>0

=>x>1 và x<>2

c: ĐKXĐ: 2x-1>=0 và 3-x>0

=>x>=1/2 và x<3

d: ĐKXĐ: x-1>0 và x-2<>0

=>x>1 và x<>2

e: ĐKXĐ: x3+1>=0

=>x>=-1