Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số trên có dạng : \(y=ax+b\left(a\ne0\right)\)
Để hàm số nghịch biến thì \(\sqrt{m}-1< 0\Leftrightarrow m< 1\)
để hầm số trên nghịch biến trên R thì:\(\left(\sqrt{m}-1\right)\)<0
\(\Leftrightarrow\sqrt{m}< 1\)
\(\Leftrightarrow m< 1\)
vậy để hàm số trên nghịch biến trên R thì m\(< \)1
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
==' đọc sgk chưa bạn.
bám vaof sgk mà làm chứ mấy câu này hỏi thì hơi thừa
\(y=ax+b\)
a<0 thif hamf nghichj bien
a>0 thì hàm đồng biến
nếu a là biểu thcuws có căn thì phải xét dkxd rồi ms kết hợp nghiệm
mình chưa học bài đó bạn ơi
mình đang tự học
không hiểu nên hỏi thôi bạn
Đk: m \(\ge\)0; \(m\ne9\)
Để hàm số \(y=\frac{-2}{\sqrt{m}-3}x+2\)luôn nghịch biến <=> \(\frac{-2}{\sqrt{m}-3}< 0\)
<=> \(\sqrt{m}-3>0\) (vì -2 <0)
<=> \(m>9\)
Vậy ...
5 - 4m + m2 < 0
=> m2 - 4m + 4 -4 + 5 <0
=> (m-2)2 + 1< 0 ( vô lý)
vậy không có giá trị nào của m để hàm số đã cho nghịch biến
Để hàm số \(y=\dfrac{3-m}{m+3}x-3\) nghịch biến trên R thì \(\dfrac{3-m}{m+3}< 0\)
=>\(\dfrac{m-3}{m+3}>0\)
TH1: \(\left\{{}\begin{matrix}m-3>0\\m+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m>-3\end{matrix}\right.\)
=>m>3
TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< 3\\m< -3\end{matrix}\right.\)
=>m<-3