K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

- Nếu m = -1,hàm số trở thành y=-2x2-x+4 và y'=-4x-1.Dễ thấy hàm số đồng biến trên \(\left(-\infty;-\dfrac{1}{4}\right)\)và nghịch biến trên \(\left(-\dfrac{1}{4};+\infty\right)\).

- Nếu m = 1,hàm số trở thành y = -x + 4 luôn nghịch biến trên \(\left(-\infty;+\infty\right)\).Vậy m=1 là một giá trị nguyên thỏa mãn.

- Nếu m \(\ne\pm1\),ta có y'=3(m2-1)x2+2(m-1)x-1.

Để hàm số nghịch biến trên khoảng\(\left(-\infty;+\infty\right)\Leftrightarrow\)y'\(\le\)0,\(\forall x\in\)R

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1< 0\\\Delta'=\left(m-1\right)^2+3\left(m^2-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< m< 1\\\left(m-1\right)\left(4m+2\right)\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}-1< m< 1\\-\dfrac{1}{2}\le m\le1\end{matrix}\right.\Leftrightarrow}-\dfrac{1}{2}\le m< 1}\)

Suy ra có 1 nguyên m=0 thỏa mãn yêu cầu bài toán trong trường hợp này.

Vậy có tất cả hai giá trị nguyên m=0,m=1 thỏa mãn bài toán.

 

NV
12 tháng 8 2020

3.

Hàm trùng phương \(f\left(x\right)=ax^4+bx^2+c\) với \(a\ne0\) đồng biến trên \(\left(0;+\infty\right)\) khi và chỉ khi:

\(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Leftrightarrow m\ge0\)

Hoặc giải bt: \(y'=4x^3+2mx\ge0\) ;\(\forall x>0\)

\(\Leftrightarrow2x\left(x^2+m\right)\ge0\)

\(\Leftrightarrow x^2+m\ge0\)

\(\Leftrightarrow x^2\ge-m\)

\(\Leftrightarrow-m\le min\left(x^2\right)=0\Rightarrow m\ge0\)

NV
12 tháng 8 2020

1.

Giả sử tiếp tuyến d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2>0\)

\(\Rightarrow cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|a-2b\right|}{\sqrt{\left(a^2+b^2\right)\left(1^2+\left(-2\right)^2\right)}}=\frac{\left|a-2b\right|}{\sqrt{5\left(a^2+b^2\right)}}\)

\(\Leftrightarrow4\left(a-2b\right)^2=15\left(a^2+b^2\right)\)

\(\Leftrightarrow11a^2+16ab-b^2=0\)

Nghiệm xấu quá nhìn muốn nản, bạn tự làm tiếp :)

2.

\(y'=cosx-2sinx+2m-5\)

Hàm số đồng biến trên TXĐ khi và chỉ khi \(y'\ge0\) ; \(\forall x\)

\(\Leftrightarrow cosx-2sinx+2m-5\ge0\) ;\(\forall x\)

\(\Leftrightarrow2m-5\ge2sinx-cosx\)

\(\Leftrightarrow2m-5\ge f\left(x\right)_{max}\) với \(f\left(x\right)=2sinx-cosx\)

Ta có: \(f\left(x\right)=2sinx-cosx=\sqrt{5}\left(\frac{2}{\sqrt{5}}sinx-\frac{1}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\)

Với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2}{\sqrt{5}}\)

\(\Rightarrow f\left(x\right)\le\sqrt{5}\Rightarrow2m-5\ge\sqrt{5}\Rightarrow m\ge\frac{5+\sqrt{5}}{2}\)

9 tháng 4 2017

a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10).

b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1).

c) y' = = = .

d) y' = = = .

e) y' = 3. . = 3. = - ..