Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề yêu cầu tìm m sao cho hàm số đồng biến trên từng khoảng xác định K \(\left(-\infty,m\right),\left(m,+\infty\right)\)
\(y'=\dfrac{x^2-2mx+m^2-m+1}{\left(x-m\right)^2}\)
y đồng biến trên K \(\Leftrightarrow x^2-2mx+m^2-m+1\ge0,\forall x\in K\)
\(f\left(x\right)=x^2-2mx+m^2-m+1\ge0,\forall x\in K\) (1)
Nhận xét: f(x) là một parabol hướng lên và min tại \(x=m\)
(1) \(\Leftrightarrow\) \(f\left(m\right)\ge0\) \(\Leftrightarrow1\ge m\)
Vậy...
Đáp án: D.
⇔ ∆ ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.
Đáp án: A.
Hàm số nghịch biến trên từng khoảng ( - ∞ ; -m), (-m; + ∞ ) khi và chỉ khi
⇔ - m 2 + 5m - 4 < 0
⇔
Đáp án: A.
Hàm số nghịch biến trên từng khoảng (- ∞ ; -m), (-m; + ∞ ) khi và chỉ khi
⇔ - m 2 + 5m - 4 < 0
⇔
\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?
\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)
Hàm đồng biến trên các khoảng xác định khi và chỉ khi:
\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)
\(\Leftrightarrow m\le-\dfrac{1}{2}\)
Đáp án: D.
⇔ Δ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.