Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = m(x + 2) – x(2m + 1) = (-1 – m)x + 2m
Hàm số bậc nhất y = ax + b nghịch biến suy ra a < 0 hay m > -1
Chọn C.
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
- a = 1 > 0 hàm số đồng biến trên R.
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)
a: để hàm số đồng biến trên R thì m-1>0
hay m>1
b: Để hàm số nghịch biến thì m>0
a) Hàm số đồng biến khi (2m+3) > 0 => m > -3/2
Hs nghịch biến khi (2m+3) < 0 => m < -3/2
b) , c , d tương tự
Hàm nghịch biến trên khoảng đã cho khi:
\(-\dfrac{b}{2a}=\left|m-1\right|\le2\)
\(\Rightarrow-2\le m-1\le2\)
\(\Rightarrow-1\le m\le3\)
Đáp án C