Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)
Bảng biến thiên là:
x | -\(\infty\) -3/4 +\(\infty\) |
y | -\(\infty\) -29/4 +\(\infty\) |
b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4
GTNN của hàm số là y=-29/4 khi x=-3/4
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
- a = 1 > 0 hàm số đồng biến trên R.
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)
Hàm số trên có dạng y = ax + b => Hàm số đồng biến khi a > 0 , nghịch biến khi a<0
a) Hàm số nghịch biến khi \(m-2< 0\Rightarrow m< 2\)
b) Hàm số nghịch biến khi \(m+1< 0\Rightarrow m< -1\)
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)
Bảng biến thiên:
x | -\(\infty\) 5/3 +\(\infty\) |
y | +\(\infty\) 13/3 -\(\infty\) |
b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3
Giá trị nhỏ nhất là y=13/3 khi x=5/3
a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]
Bảng biến thiên là:
x | -∞ | 2 | +∞ |
y | -∞ | 1 | -∞ |
Tập xác định : D= R\ {-2}.
Lấy x 1 ≠ x 2 , khi đó ta có:
f x 2 - f x 1 x 2 - x 1 = m x 2 + 2 - m x 1 + 2 x 2 - x 1 = m x 1 + 2 - m x 2 + 2 x 2 + 2 . x 1 + 2 x 2 - x 1 = m x 1 - x 2 x 2 + 2 x 1 + 2 x 2 - x 1 = - m x 2 + 2 x 1 + 2
Với x 1 ; x 2 thuộc - 2 ; + ∞ hoặc cùng thuộc - ∞ ; - 2 thì x 1 + 2 x 2 + 2 > 0
Vì vậy f(x) nghịch biến khi f x 2 - f x 1 x 2 - x 1 < 0 ⇔ - m < 0 ⇔ m > 0 .