\(y=-2x+2+m\sqrt{x^2-4x+5}\) có cực đại

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

Hàm số xác định trên R

Ta có \(y'=-2+m\frac{x-2}{\sqrt{x^2-4x+5}};y"=\frac{m}{\left(x^2-4x+5\right)^{\frac{3}{2}}}\)

- Nếu m = 0 thì y' = -2 nên hàm số không có cực trị

\(m\ne0\) vì dấu của y" chỉ phụ thuộc vào m nên để hàm số có cực đại thì trước hết \(y"=0\Leftrightarrow2\sqrt{\left(x-2\right)^2+1}=m\left(x-2\right)\left(1\right)\)

Đặt \(t=x-2\) thì (1) trở thành \(mt=2\sqrt{t^2+1}\) \(\Leftrightarrow\begin{cases}t\le0\\\left(m^2-4\right)t^2=1\end{cases}\)

                                                                      \(\Leftrightarrow\begin{cases}t\le0\\t^2=\frac{1}{m^2-4}\end{cases}\) (3)

=> (3) có nghiệm \(\Leftrightarrow m^2-4>0\Leftrightarrow m< -2\) (Do m < 0)

Vậy m < - 2 thì hàm số có cực đại