Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+TXĐ: X\(\in\)R
+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)
+y''=6(x-1)=> y' = 0 khi x = 1;y=2
+
x | -\(\infty\) 0 1 2 +\(\infty\) |
y' | + 0 - - 0 + |
y |
\(y'=3x^2-6x+m\)
để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R
suy ra \(\begin{cases}3>0\\\Delta=9-3m<0\end{cases}\) suy ra m>3
vậy m>3 là điều cần tìm
ta có \(y'=\frac{m^2-9}{\left(x+m\right)^2}\) để hàm số đồng biến trên \(\left(2;+\infty\right)\) với m khác 3 thì y'>0 với mọi \(x\in\left(2;+\infty\right)\)
\(\Rightarrow m^2-9>0\) \(\Rightarrow m\in\left(-\infty;3\right)\cup\left(3;+\infty\right)\)
vậy ta đc đk của m
Đáp án D
Đặt t = cos x ⇒ t ∈ − 1 ; 1 ⇒ y = f t = 2 t + 1 t − m
Ta có f ' t = 2 m + 1 t − m 2 sin x
Hàm số đồng biến trên khoảng:
0 ; π ⇒ f ' t > 0 t − m ≠ 0 ⇔ 2 m + 1 sinx > 0 m ≠ t ⇔ m > − 1 2 m ≥ 1 m ≤ − 1 ⇒ m ≥ 1
Đáp án D
Đặt t = c osx ⇒ t'=-sinx < 0 ; ∀ x ∈ 0 ; π suy ra t ∈ − 1 ; 1 .
Khi đó
y = f t = 2 t + 1 t − m ⇒ f ' t = − 2 m + 1 t − m 2 x t ' .
Hàm số đã cho đồng biến trên khoảng 0 ; π
⇔ f ' t > 0 ; ∀ t ∈ − 1 ; 1 ⇔ − 2 m + 1 t − m 2 x t ' > 0 ; ∀ t ∈ − 1 ; 1
mà t ' < 0 suy ra
2 m + 1 t − m 2 > 0 ; ∀ t ∈ − 1 ; 1 .
⇔ 2 m + 1 > 0 t = m ∉ − 1 ; 1 ⇔ m > − 1 2 m ∉ − 1 ; 1 ⇔ m > − 1 2 1 2 ≥ 1 m ≤ − 1 ⇔ m ≥ 1 là giá trị cần tìm