\(y=\dfrac{1}{2\left|cos3x\right|-m}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

\(0< =\left|cos3x\right|< =1\)

=>\(0< =2\left|cos3x\right|< =2\)

Để hàm số xác định trên R thì \(2\left|cos3x\right|-m< >0\) với mọi x

=>\(m< >2\left|cos3x\right|\) với mọi x

=>\(m\in R\backslash\left[0;2\right]\)

b: \(cosx\cdot cos3x=\dfrac{1}{2}\cdot\left[cos\left(x+3x\right)+cos\left(x-3x\right)\right]\)

\(=\dfrac{1}{2}\left[cos4x+cos2x\right]\)

\(=\dfrac{1}{2}\left[2\cdot cos^22x-1+cos2x\right]\)

\(=cos^22x+\dfrac{1}{2}\cdot cos2x-\dfrac{1}{2}\)

\(=cos^22x+2\cdot cos2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\)

\(=\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}\)

\(-\dfrac{3}{4}< =cos2x+\dfrac{1}{4}< =\dfrac{5}{4}\)

=>\(0< =\left(cos2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)

=>\(-\dfrac{9}{16}< =\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}< =1\)

Để hàm số xác định trên R thì \(m< >cosx\cdot cos3x\)

=>\(m\in R\backslash\left[-\dfrac{9}{16};1\right]\)

9 tháng 4 2017

a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10).

b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1).

c) y' = = = .

d) y' = = = .

e) y' = 3. . = 3. = - ..

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

19 tháng 7 2017

vì sao cosx - cos3x = -2sin2xsin(-x) = 4sin\(^2\)xcosx

31 tháng 3 2017

Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.

b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.

c) Hàm số đã cho không xác định khi và chỉ khi .

Hàm số đã cho có tập xác định là R {}.

d) Hàm số đã cho không xác định khi và chỉ khi

Hàm số đã cho có tập xác định là R {}.



17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

NM
23 tháng 8 2021

để hàm số xác định với mọi x thuộc R thì 

\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)

mà \(2cos^2x-cosx+4>0\) nên :

\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)

vậy điều kiện của m là : \(m\ge\frac{3}{7}\)