\(\sqrt{m+3}.x+2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

ĐKXĐ: \(m\ge-3\)

để hàm số \(y=\sqrt{m+3}+2\) là hàm số bậc nhất thì \(\sqrt{m+3}\ne0\Rightarrow m+3\ne0\Rightarrow m\ne-3\)

Vậy để hàm số \(y=\sqrt{m+3}+2\) là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge-3\\m\ne-3\end{matrix}\right.\Rightarrow m>-3\)

2 tháng 5 2017

a, \(\left\{{}\begin{matrix}m\ge0\\\sqrt{m}\ne\sqrt{5}\Leftrightarrow m\ne5\end{matrix}\right.\)

b, Để là hàm số đồng biến thì:\(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}>0\Rightarrow\sqrt{m}+\sqrt{5}>0\Leftrightarrow m>5\)

24 tháng 11 2019

Để hàm trên là hàm bậc nhất thì cần điêu kiện sau :

\(\hept{\begin{cases}m^2-5m+6=0\\m-1\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m-2\right)\left(m-3\right)=0\\m\ne1\end{cases}}\)

Do đó : \(m=2\) hoặc \(m=3\)

Chúc bạn học tốt !!!

16 tháng 12 2021

lớp 5 nin ko bít đấy hả

16 tháng 12 2021

ko biết hư não òi

10 tháng 8 2020

a) Ta có : \(y=\sqrt{2-m}\left(x+1\right)\)

\(=x\sqrt{2-m}+\sqrt{2-m}\)

Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\sqrt{2-m}\ne0\)

\(\Leftrightarrow m\ne4\)

b) Ta có : \(y=\frac{\sqrt{m-5}}{\sqrt{m+5}}x+\sqrt{2}\)

Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\frac{\sqrt{m-5}}{\sqrt{m+5}}\ne0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{m-5}{m+5}\ne0\\m\ne-5\end{cases}}\) \(\Leftrightarrow m\ne\pm5\)