K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 3 2020

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)}=\lim\limits_{x\rightarrow2}\left(x+1\right)=3\)

Để hàm số liên tục tại x=2

\(\Rightarrow\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\Leftrightarrow m^2+4m-1=3\)

\(\Leftrightarrow m^2+4m-4=0\Rightarrow m=-2\pm2\sqrt{2}\)

NV
10 tháng 3 2022

Hàm \(f\left(x\right)\) viết lại: \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x-2}\text{ khi }x>2\\\dfrac{x^2-3x+2}{2-x}\text{ khi }x< 2\\a,x=2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-3x+2}{x-2}=\lim\limits_{x\rightarrow2^+}\dfrac{\left(x-1\right)\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2^+}\left(x-1\right)=1\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x^2-3x+2}{2-x}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-1\right)\left(x-2\right)}{-\left(x-2\right)}=\lim\limits_{x\rightarrow2^-}\left(1-x\right)=-1\)

\(\Rightarrow\lim\limits_{x\rightarrow2^+}f\left(x\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)

\(\Rightarrow\) Không tồn tại \(\lim\limits_{x\rightarrow2}f\left(x\right)\Rightarrow\) hàm luôn  luôn gián đoạn tại \(x=2\)

Hay ko tồn tại a thỏa mãn yêu cầu đề bài

17 tháng 11 2023

loading...loading...loading...  

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Đề lỗi công thức toán rồi bạn. Không nhìn thấy được biểu thức hiển thị.

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(mx\right)=m\)

Hàm liên tục tại x=1 khi: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)

\(\Leftrightarrow m=\dfrac{1}{4}\)

NV
2 tháng 1

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2+2\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x^2+2\right)=3\)

\(f\left(1\right)=3.1+m=m+3\)

Hàm số liên tục tại \(x_0=1\) khi và chỉ khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)

\(\Rightarrow m+3=3\Rightarrow m=0\)

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x}{x\left(\sqrt{x+4}+2\right)}=\lim\limits_{x\rightarrow0^+}\dfrac{1}{\sqrt{x+4}+2}=\dfrac{1}{4}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(mx^2+2m+\dfrac{1}{4}\right)=2m+\dfrac{1}{4}\)

Hàm liên tục tại x=0 khi: \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow2m+\dfrac{1}{4}=\dfrac{1}{4}\Leftrightarrow m=0\)

2 tháng 3 2021

em cảm ơn ạ

19 tháng 11 2023

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{2-\sqrt{2x^2-4}}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{4-2x^2+4}{2+\sqrt{2x^2-4}}\cdot\dfrac{1}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{-2\left(x^2-4\right)}{-\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x+2\right)}{2+\sqrt{2x^2-4}}=\dfrac{2\left(2+2\right)}{2+\sqrt{2\cdot2^2-4}}\)

\(=\dfrac{2\cdot4}{2+2}=\dfrac{8}{4}=2\)

\(f\left(2\right)=1\)

=>\(\lim\limits_{x\rightarrow2}f\left(x\right)< >f\left(2\right)\)

=>Hàm số bị gián đoạn tại x=2

NV
2 tháng 3 2021

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(x^2+x+1\right)=3\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)

Hàm liên tục tại x=1 khi:

\(a+2=3\Leftrightarrow a=1\)