\(y=\dfrac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x-2011\)

là...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Để hàm số đã cho là hàm nghịch biến thì với \(x_1> x_2\in\mathbb{R}\) thì \(y(x_1)< y(x_2)\)

\(\Leftrightarrow \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x_1-2011< \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x_2-2011\)

\(\Leftrightarrow \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}(x_1-x_2)< 0\)

\(\Leftrightarrow \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}< 0\) (do \(x_1-x_2> 0\) )

\(\Leftrightarrow \frac{(m-1)(m-2012)}{(m-\sqrt{2})^2+1}< 0\)

\(\Leftrightarrow (m-1)(m-2012)< 0\)

\(\Leftrightarrow 1< m< 2012\)

NV
2 tháng 11 2019

\(y=\frac{2012}{m^2-2\sqrt{2}m+3}x-2011+\frac{m^2-2013m}{m^2-2\sqrt{2}m+3}\)

Hàm số đã cho nghịch biến khi và chỉ khi \(\frac{2012}{m^2-2\sqrt[]{2}m+3}< 0\)

\(\Leftrightarrow m^2-2\sqrt{2}m+3< 0\)

\(\Leftrightarrow\left(m-\sqrt{2}\right)^2+1< 0\) (vô nghiệm)

Vậy ko tồn tại m thỏa mãn

12 tháng 11 2017

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2

16 tháng 10 2020

m=2. Khi đó hàm số trở thành: f(x)= -4x-3

Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0