\(f\left(x\right)=4x^2-4mx+m^2-2m\) trên đoạn \([-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

Hình như bạn ghi đề ko đúng, ở nửa đoạn \([-2;0)\) thì ko thể xác định được GTNN của hàm số khi \(m>0\)

7 tháng 11 2019

mk viết đúng ak bn : )

NV
23 tháng 5 2020

\(a=4>0\) ; \(-\frac{b}{2a}=\frac{m}{2}\)

TH1: Nếu \(\frac{m}{2}\le-2\Rightarrow\) hàm số đồng biến trên \(\left[-2;0\right]\)

\(\Rightarrow y_{min}=y\left(-2\right)=m^2+6m+16=3\)

\(\Leftrightarrow m^2+6m+13=0\) (vô nghiệm)

TH2: \(\frac{m}{2}\ge0\Rightarrow m\ge0\) hàm số nghịch biến trên \(\left[-2;0\right]\)

\(\Rightarrow y_{min}=y\left(0\right)=m^2-2m=3\)

\(\Rightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=3\end{matrix}\right.\)

TH3: \(-2< \frac{m}{2}< 0\Rightarrow-4< m< 2\)

\(\Rightarrow y_{min}=y\left(\frac{m}{2}\right)=-2m=3\Rightarrow m=-\frac{3}{2}\)

Vậy \(\sum=-\frac{3}{2}+3=\frac{3}{2}\)

23 tháng 5 2020

dạ nếu vậy khi làm xong thì có phải thử lại xem giá trị m nào thỏa mãn thì lấy không thì lại ko ạ hay lấy tất ạ

NV
12 tháng 10 2020

Đề bài có vấn đề thì phải, chỗ \(4m^2\) thấy sai sai

NV
12 tháng 10 2020

\(f\left(x\right)=\left(2x-m\right)^2-2m\)

- TH1: \(\frac{m}{2}\in\left[0;2\right]\Rightarrow0\le m\le4\)

Khi đó \(f\left(x\right)_{min}=f\left(\frac{m}{2}\right)=-2m=3\Rightarrow m=-\frac{3}{2}\left(ktm\right)\)

- TH2: \(\frac{m}{2}< 0\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2-2m=3\)

\(\Rightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=3>0\left(l\right)\end{matrix}\right.\)

TH3: \(\frac{m}{2}>2\Leftrightarrow m>4\Rightarrow f\left(x\right)\) nghịch biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=16-8m+m^2-2m=3\)

\(\Leftrightarrow m^2-10m+13=0\Rightarrow\left[{}\begin{matrix}m=5+2\sqrt{3}\\m=5-2\sqrt{3}< 4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sum m=-1+5+2\sqrt{3}=\)

3 tháng 11 2018

Câu 2: (d) : y= kx + x+ 2

Vì (d) cắt trục hoành tại điểm có hoành độ bằng 1

nên (d) sẽ cắt A(1;0)

A(1;0) ∈ (d) ⇔ 0 = k +1+2 ⇔ k= -3

Vậy k = -3

Câu 3:

y = f(x) = \(x^2-4x+3\)

TXĐ: D = R

Đỉnh I (2;-1)

Vì a > 0 nên hàm số đồng biến trên khoảng (-∞ ; 2) và nghịch biến trên khoảng (2;+∞)

Ta có: hàm số nằm trên đoạn [ -2;1]

Suy ra: giá trị lớn nhất đạt được khi x= -2 và giá trị nhỏ nhất đạt được khi x = 1

Với x = -2 ⇒ y = 15

Với x = 1 ⇒ y= 0

Vậy giá trị lớn nhất M = 15 , giá trị nhỏ nhất m = 0

1 tháng 3 2019

\(a)\left(1+m\right)x^2-2mx+2m=0\\ \Delta=\left(2m\right)^2-4\left(1+m\right).2m\\ =4m^2-8m^2-8m\\ =-4m^2-8m\)

Để phương trình có nghiệm \(\Delta\ge0\)

\(-4m^2-8m\ge0\\ \Leftrightarrow-4m\left(m+2\right)\ge0\\ m\left(m+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow-2\le m\le0\)

1 tháng 3 2019

\(b)\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\\ \Delta=\left(2m-3\right)^2-4\left(m-2\right)\left(5m-6\right)\\ =4m^2-12m+9-20m^2+64m-48\\ =-16m^2+52m-39\)

Để phương trình có nghiệm thì \(\Delta\ge0\)

\(-16m^2+52m-39\ge0\\ \Leftrightarrow m\in\left(\dfrac{13\pm\sqrt{13}}{8}\right)\)

Vậy...

NV
24 tháng 10 2019

\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)

Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)

2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)

Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)

3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)

4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)

Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)

\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)

24 tháng 10 2019

cảm ơn bạn nhiều nhé