Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y = f(x) có TXĐ: D = R
điều kiện là: \(-x^2+4\left(m+1\right)x+1-4m^2\ne0\) với mọi số thực x
<=> \(-x^2+4\left(m+1\right)x+1-4m^2=0\) vô nghiệm với mọi số thực x
<=> \(\Delta'< 0\)
<=> 4 (m+1 )2 - 4m^2 < 0
<=> 2m + 1 < 0
<=> m < -1/2
Vậy : ...
b) Để y = f(x) có TXĐ: D = R
điều kiện là:
\(\frac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\ge0\) với mọi số thực x (1)
Lại có: \(-4x^2+5x-2< 0\) với mọi số thực x ( Tự chứng minh )
Do đó: (1) <=> \(-x^2+4\left(m+1\right)x+1-4m^2\le0\) với mọi số thực x
<=> \(\Delta'\le0\)
<=> \(m\le-\frac{1}{2}\)
Vậy: ...
a.
Miền xác định của hàm số là miền đối xứng: \(D=R\backslash\left\{0\right\}\)
\(f\left(-x\right)=\frac{\left|6-\left(-2x\right)\right|-\left|6+\left(-2x\right)\right|}{\left(-x\right)^2}=-\frac{\left|6-2x\right|-\left|6+2x\right|}{x^2}=-f\left(x\right)\)
Hàm lẻ
b.
ĐKXĐ: \(\left\{{}\begin{matrix}6-3x\ge0\\x\ne0\\x+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\\x>-1\end{matrix}\right.\)
\(D=\left(-1;0\right)\cup(0;2]\)
ĐKXĐ:
\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2\ge0\\5-x>0\\x^2-2x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left|x\right|\ge\sqrt{2}\\x< 5\\x\ne-1;x\ne3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2}\le x< 5\\x\ne3\end{matrix}\right.\)
1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)
\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)
a.
ĐKXĐ \(\left|x\right|-1\ne0\Leftrightarrow x\ne\pm1\)
\(\Rightarrow D=\left(-\infty;-1\right)\cup\left(-1;1\right)\cup\left(1;+\infty\right)\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Rightarrow D=[0;1)\cup\left(1;+\infty\right)\)
Để hàm số có TXĐ là R thì \(g\left(x\right)=x^2+2\left(2m-3\right)x+m^2-5m+9\ge0\) \(\forall x\)
và \(g\left(x\right)\ne4\)
\(\Delta'=\left(2m-3\right)^2-\left(m^2-5m+9\right)=3m^2-7m\le0\)
\(\Rightarrow0\le m\le\frac{7}{3}\) (1)
Xét \(g\left(x\right)=4\Leftrightarrow x^2+2\left(2m-3\right)x+m^2-5m+5=0\)
Để pt vô nghiệm
\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(m^2-5m+5\right)< 0\)
\(\Leftrightarrow3m^2-7m+4< 0\Rightarrow1< m< \frac{4}{3}\) (2)
Kết hợp (1) và (2) ta được \(1< m< \frac{4}{3}\)
cảm ơn ạ