Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
Thay y=0 vào y=2x+3, ta được:
2x+3=0
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) và y=0 vào y=(2m+3)x+m-1, ta được:
\(-\dfrac{3}{2}\left(2m+3\right)+m-1=0\)
\(\Leftrightarrow-3m-\dfrac{9}{2}+m-1=0\)
\(\Leftrightarrow-2m=\dfrac{11}{2}\)
hay \(m=-\dfrac{11}{4}\)
+) Tìm giao điểm của đường thẳng \(y=-3x+2\) và trục hoành:
Phương trình hoành độ giao điểm: \(-3x+2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy đường thẳng \(y=-3x+2\) cắt trục hoành tại điểm \(A\left(\dfrac{2}{3};0\right)\)
+) Yêu cầu bài toán \(\Rightarrow A\left(\dfrac{2}{3};0\right)\in\left(d\right):y=\dfrac{3}{2}x+2m+1\)
Thay \(x=\dfrac{2}{3};y=0\) ta có: \(\dfrac{3}{2}.\dfrac{2}{3}+2m+1=0\Rightarrow2m+2=0\)
\(\Rightarrow2m=-2\Rightarrow m=-1\).
Phương trình hoành độ giao điểm là:
x-2m+1=2x-3
=>-x=-3+2m-1
=>-x=2m-4
=>x=-2m+4
Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0
=>2x-3>0
=>x>3/2
Gọi giao điểm của (d1) y = 2x - 1 và (d2) y = 3x + m trên trục hoành là A(xA ; 0)
Vì A(xA ; 0) thuộc (d1) nên 0 = 2xA - 1 => xA = 1/2
Vì A(xA ; 0) thuộc (d2) nên 0 = 3xA + m
<=> 0 = 3 . 1/2 + m
<=> m = -3/2
Lời giải:
PT hoành độ giao điểm:
$-3x+6-(2,5x-2m+1)=0$
$\Leftrightarrow -5,5x+5+2m=0$
$\Leftrightarrow x=\frac{5+2m}{5,5}$
Tung độ giao điểm:
$y=-3x+6=\frac{-3(5+2m)}{5,5}+6$
Để 2 đths trên cắt nhau tại 1 điểm trên trục hoành thì $y=\frac{-3(5+2m)}{5,5}+6=0$
$\Leftrightarrow m=3$